Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators

IF 1.7 Q2 MATHEMATICS, APPLIED Foundations of data science (Springfield, Mo.) Pub Date : 2020-02-02 DOI:10.3934/fods.2020017
Håkon Hoel, G. Shaimerdenova, R. Tempone
{"title":"Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators","authors":"Håkon Hoel, G. Shaimerdenova, R. Tempone","doi":"10.3934/fods.2020017","DOIUrl":null,"url":null,"abstract":"We introduce a new multilevel ensemble Kalman filter method (MLEnKF) which consists of a hierarchy of independent samples of ensemble Kalman filters (EnKF). This new MLEnKF method is fundamentally different from the preexisting method introduced by Hoel, Law and Tempone in 2016, and it is suitable for extensions towards multi-index Monte Carlo based filtering methods. Robust theoretical analysis and supporting numerical examples show that under appropriate regularity assumptions, the MLEnKF method has better complexity than plain vanilla EnKF in the large-ensemble and fine-resolution limits, for weak approximations of quantities of interest. The method is developed for discrete-time filtering problems with finite-dimensional state space and linear observations polluted by additive Gaussian noise.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2020017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13

Abstract

We introduce a new multilevel ensemble Kalman filter method (MLEnKF) which consists of a hierarchy of independent samples of ensemble Kalman filters (EnKF). This new MLEnKF method is fundamentally different from the preexisting method introduced by Hoel, Law and Tempone in 2016, and it is suitable for extensions towards multi-index Monte Carlo based filtering methods. Robust theoretical analysis and supporting numerical examples show that under appropriate regularity assumptions, the MLEnKF method has better complexity than plain vanilla EnKF in the large-ensemble and fine-resolution limits, for weak approximations of quantities of interest. The method is developed for discrete-time filtering problems with finite-dimensional state space and linear observations polluted by additive Gaussian noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于独立EnKF估计的样本平均值的多水平集成卡尔曼滤波
我们介绍了一种新的多级集成卡尔曼滤波器方法(MLEnKF),该方法由集成卡尔曼滤波器的独立样本层次组成。这种新的MLEnKF方法与Hoel、Law和Tempone在2016年引入的现有方法有根本不同,它适用于向基于多指标蒙特卡罗的滤波方法扩展。稳健的理论分析和支持的数值例子表明,在适当的正则性假设下,对于感兴趣的量的弱近似,MLEnKF方法在大系综和精细分辨率极限方面比普通EnKF具有更好的复杂性。该方法是针对有限维状态空间和线性观测受到加性高斯噪声污染的离散时间滤波问题而开发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
CHATGPT FOR COMPUTATIONAL TOPOLOGY. PERSISTENT PATH LAPLACIAN. Weight set decomposition for weighted rank and rating aggregation: An interpretable and visual decision support tool Hierarchical regularization networks for sparsification based learning on noisy datasets Noise calibration for SPDEs: A case study for the rotating shallow water model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1