{"title":"A jump point search improved ant colony hybrid optimization algorithm for path planning of mobile robot","authors":"Tao Chen, Suifan Chen, Kuoran Zhang, Guoting Qiu, Qipeng Li, Xinmin Chen","doi":"10.1177/17298806221127953","DOIUrl":null,"url":null,"abstract":"To improve the finding path accuracy of the ant colony algorithm and reduce the number of turns, a jump point search improved ant colony optimization hybrid algorithm has been proposed in this article. Firstly, the initial pheromone concentration distribution gets from the jump points has been introduced to guide the algorithm in finding the way, thus accelerating the early iteration speed. The turning cost factor in the heuristic function has been designed to improve the smoothness of the path. Finally, the adaptive reward and punishment factor, and the Max–Min ant system have been introduced to improve the iterative speed and global search ability of the algorithm. Simulation through three maps of different scales is carried out. Furthermore, the results prove that the jump point search improved ant colony optimization hybrid algorithm performs effectively in finding path accuracy and reducing the number of turns.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221127953","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 7
Abstract
To improve the finding path accuracy of the ant colony algorithm and reduce the number of turns, a jump point search improved ant colony optimization hybrid algorithm has been proposed in this article. Firstly, the initial pheromone concentration distribution gets from the jump points has been introduced to guide the algorithm in finding the way, thus accelerating the early iteration speed. The turning cost factor in the heuristic function has been designed to improve the smoothness of the path. Finally, the adaptive reward and punishment factor, and the Max–Min ant system have been introduced to improve the iterative speed and global search ability of the algorithm. Simulation through three maps of different scales is carried out. Furthermore, the results prove that the jump point search improved ant colony optimization hybrid algorithm performs effectively in finding path accuracy and reducing the number of turns.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.