Synthesis of cadmium hydroxide nanostructure via composite-hydroxide-mediated approach

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanomaterials and Nanotechnology Pub Date : 2019-05-30 DOI:10.1177/1847980419852551
J. Adnan, M. Arfan, T. Shahid, Mz Khan, R. Masab, Ah Ramish, S. Ahtasham, AG Wattoo, M. Hashim, A. Zahoor, MF Nasir
{"title":"Synthesis of cadmium hydroxide nanostructure via composite-hydroxide-mediated approach","authors":"J. Adnan, M. Arfan, T. Shahid, Mz Khan, R. Masab, Ah Ramish, S. Ahtasham, AG Wattoo, M. Hashim, A. Zahoor, MF Nasir","doi":"10.1177/1847980419852551","DOIUrl":null,"url":null,"abstract":"Polycrystalline cadmium hydroxide nanomaterials have successfully been synthesized by composite-hydroxide-mediated approach with growth time variation. The influence of growth time on structural, morphological, elemental, and optical properties was explored using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, and ultraviolet–visible spectroscopy. X-ray diffraction results revealed the hexagonal and monoclinic phases of cadmium hydroxide along with rhombohedral impurity phase of cadmium carbonate. Fourier transform infrared spectroscopy further endorsed the X-ray diffraction results and confirmed the Cd–O bonding vibrations. Time-dependent uniform distribution of spherical morphology was observed in the scanning electron micrographs of the product. The presence of cadmium and oxygen in the energy dispersive X-ray spectroscopy results fingerprinted the purity and formation of the desired nanomaterials. Crystallite size was decreased with the increase of growth time as estimated by the Debye–Scherrer method. Furthermore, the optical bandgap was measured by Tauc’s relation using ultraviolet–visible absorption spectra and found to be in the range of 3.2–3.5 eV.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1847980419852551","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1847980419852551","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

Abstract

Polycrystalline cadmium hydroxide nanomaterials have successfully been synthesized by composite-hydroxide-mediated approach with growth time variation. The influence of growth time on structural, morphological, elemental, and optical properties was explored using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, and ultraviolet–visible spectroscopy. X-ray diffraction results revealed the hexagonal and monoclinic phases of cadmium hydroxide along with rhombohedral impurity phase of cadmium carbonate. Fourier transform infrared spectroscopy further endorsed the X-ray diffraction results and confirmed the Cd–O bonding vibrations. Time-dependent uniform distribution of spherical morphology was observed in the scanning electron micrographs of the product. The presence of cadmium and oxygen in the energy dispersive X-ray spectroscopy results fingerprinted the purity and formation of the desired nanomaterials. Crystallite size was decreased with the increase of growth time as estimated by the Debye–Scherrer method. Furthermore, the optical bandgap was measured by Tauc’s relation using ultraviolet–visible absorption spectra and found to be in the range of 3.2–3.5 eV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复合氢氧化物介导合成氢氧化镉纳米结构
采用复合氢氧化物介导的方法,成功地合成了随生长时间变化的多晶氢氧化镉纳米材料。利用x射线衍射、扫描电镜、傅里叶变换红外光谱、能量色散x射线光谱和紫外可见光谱等方法探讨了生长时间对结构、形态、元素和光学性质的影响。x射线衍射结果表明,氢氧化镉为六方和单斜相,碳酸镉为菱面体杂质相。傅里叶变换红外光谱进一步证实了x射线衍射结果,并证实了Cd-O键合振动。扫描电镜观察到产物的球形形貌随时间的均匀分布。在能量色散x射线光谱学结果中镉和氧的存在表明了所需纳米材料的纯度和形成。通过Debye-Scherrer法估计,晶体尺寸随生长时间的增加而减小。利用紫外-可见吸收光谱,利用Tauc关系测量了带隙,带隙范围在3.2 ~ 3.5 eV之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials and Nanotechnology
Nanomaterials and Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.20
自引率
21.60%
发文量
13
审稿时长
15 weeks
期刊介绍: Nanomaterials and Nanotechnology is a JCR ranked, peer-reviewed open access journal addressed to a cross-disciplinary readership including scientists, researchers and professionals in both academia and industry with an interest in nanoscience and nanotechnology. The scope comprises (but is not limited to) the fundamental aspects and applications of nanoscience and nanotechnology
期刊最新文献
Grewia tenax-Mediated Silver Nanoparticles as Efficient Antibacterial and Antifungal Agents Material Removal Mechanism and Evolution of Subsurface Defects during Nanocutting of Monocrystalline Cu Rapid Colorimetric Detection of Hg (II) Based on Hg (II)-Induced Suppressed Enzyme-Like Reduction of 4-Nitrophenol by Au@ZnO/Fe3O4 in a Cosmetic Skin Product Nanomaterials in Nanophotonics Structure for Performing All-Optical 2 × 1 Multiplexer Based on Elliptical IMI-Plasmonic Waveguides Low Dimension Elemental and van der Waals Hetetostructures Materials including C Nanostructures and Perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1