Favorable and unfavorable roles of microglia and macrophages in the pathologic central nervous system

Junya Tanaka
{"title":"Favorable and unfavorable roles of microglia and macrophages in the pathologic central nervous system","authors":"Junya Tanaka","doi":"10.20517/2347-8659.2020.04","DOIUrl":null,"url":null,"abstract":"Resident microglia in the central nervous system (CNS) are activated rapidly in response to even minor pathologic changes in the CNS, releasing various cytokines, growth factors, reactive oxygen species and other bioactive substances, in addition to eliminating synapses and degenerating cells through phagocytosis. Monocytes in circulation invade the inflamed brain tissues and develop into macrophages that also produce several bioactive substances and engage in phagocytosis. This article introduces methods for distinguishing microglia and macrophages. The pathophysiological roles of resident microglia and macrophages are discussed in animal models with neuroinflammation in the brain either with or without disruption of the blood-brain barrier. Both cell types have ameliorating and aggravating effects on the pathologic CNS, and their different roles are addressed in this article. Furthermore, this article compares the effects of some pharmacological interventions to induce phenotypic cellular changes for improved outcomes of the pathologic CNS.","PeriodicalId":19129,"journal":{"name":"Neuroimmunology and Neuroinflammation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimmunology and Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20517/2347-8659.2020.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Resident microglia in the central nervous system (CNS) are activated rapidly in response to even minor pathologic changes in the CNS, releasing various cytokines, growth factors, reactive oxygen species and other bioactive substances, in addition to eliminating synapses and degenerating cells through phagocytosis. Monocytes in circulation invade the inflamed brain tissues and develop into macrophages that also produce several bioactive substances and engage in phagocytosis. This article introduces methods for distinguishing microglia and macrophages. The pathophysiological roles of resident microglia and macrophages are discussed in animal models with neuroinflammation in the brain either with or without disruption of the blood-brain barrier. Both cell types have ameliorating and aggravating effects on the pathologic CNS, and their different roles are addressed in this article. Furthermore, this article compares the effects of some pharmacological interventions to induce phenotypic cellular changes for improved outcomes of the pathologic CNS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小胶质细胞和巨噬细胞在病理性中枢神经系统中的有利和不利作用
中枢神经系统(central nervous system, CNS)中的常驻小胶质细胞(Resident microglia)在中枢神经系统(CNS)发生哪怕是微小的病理变化时也会迅速被激活,释放各种细胞因子、生长因子、活性氧等生物活性物质,并通过吞噬作用消除突触和变性细胞。循环中的单核细胞侵入发炎的脑组织并发展成巨噬细胞,巨噬细胞也产生多种生物活性物质并参与吞噬。本文介绍了鉴别小胶质细胞和巨噬细胞的方法。在动物模型中讨论了驻留小胶质细胞和巨噬细胞的病理生理作用,这些动物模型有或没有血脑屏障破坏的大脑神经炎症。这两种细胞类型对病理中枢神经系统都有改善和加重的作用,本文将讨论它们的不同作用。此外,本文比较了一些药物干预对诱导病理中枢神经系统表型细胞改变的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
348
期刊最新文献
Acknowledgment to Reviewers Neurological connections and endogenous biochemistry - potentially useful in electronic-nose diagnostics for coronavirus diseases Use of intravenous immunoglobulin to successfully treat COVID-19 associated encephalitis Viruses and neuroinflammation in multiple sclerosis Pathways linking Alzheimer’s disease risk genes expressed highly in microglia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1