A mixture of ordered probit models with endogenous switching between two latent classes

IF 3.2 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Stata Journal Pub Date : 2022-09-01 DOI:10.1177/1536867X221124516
J. Huismans, Jan Willem Nijenhuis, A. Sirchenko
{"title":"A mixture of ordered probit models with endogenous switching between two latent classes","authors":"J. Huismans, Jan Willem Nijenhuis, A. Sirchenko","doi":"10.1177/1536867X221124516","DOIUrl":null,"url":null,"abstract":"Ordinal responses can be generated, in a cross-sectional context, by different unobserved classes of population or, in a time-series context, by different latent regimes. We introduce a new command, swopit, that fits a mixture of ordered probit models with exogenous or endogenous switching between two latent classes (regimes). Switching is endogenous if unobservables in the classassignment model are correlated with unobservables in the outcome models. We provide a battery of postestimation commands; assess via Monte Carlo experiments the finite-sample performance of the maximum likelihood estimator of the parameters, probabilities, and their standard errors (both the asymptotic and bootstrap ones); and apply the new command to model the monetary policy interest rates.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"557 - 596"},"PeriodicalIF":3.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X221124516","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Ordinal responses can be generated, in a cross-sectional context, by different unobserved classes of population or, in a time-series context, by different latent regimes. We introduce a new command, swopit, that fits a mixture of ordered probit models with exogenous or endogenous switching between two latent classes (regimes). Switching is endogenous if unobservables in the classassignment model are correlated with unobservables in the outcome models. We provide a battery of postestimation commands; assess via Monte Carlo experiments the finite-sample performance of the maximum likelihood estimator of the parameters, probabilities, and their standard errors (both the asymptotic and bootstrap ones); and apply the new command to model the monetary policy interest rates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在两个潜在类别之间具有内生转换的有序概率模型的混合
在横断面情况下,不同的未观察到的人口类别可以产生顺序响应,或者在时间序列情况下,由不同的潜在状态产生顺序响应。我们引入了一个新的命令swopit,它适合在两个潜在类别(政权)之间具有外生或内生切换的有序概率模型的混合物。如果分类分配模型中的不可观测值与结果模型中的不可观测值相关,则转换是内生的。我们提供了一系列后估计命令;通过蒙特卡罗实验评估参数、概率及其标准误差(渐近和自举误差)的最大似然估计的有限样本性能;并应用新命令对货币政策利率进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stata Journal
Stata Journal 数学-统计学与概率论
CiteScore
7.80
自引率
4.20%
发文量
44
审稿时长
>12 weeks
期刊介绍: The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.
期刊最新文献
Cluster randomized controlled trial analysis at the cluster level: The clan command. mpitb: A toolbox for multidimensional poverty indices Iterative intercensal single-decrement life tables using Stata Facilities for optimizing and designing multiarm multistage (MAMS) randomized controlled trials with binary outcomes hdps: A suite of commands for applying high-dimensional propensity-score approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1