About a fixed-point-type transformation to solve quadratic matrix equations using the Krasnoselskij method

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED Mathematical Methods in the Applied Sciences Pub Date : 2022-05-03 DOI:10.1002/mma.8336
Miguel Ángel Hernández-Verón, Natalia Romero-Álvarez
{"title":"About a fixed-point-type transformation to solve quadratic matrix equations using the Krasnoselskij method","authors":"Miguel Ángel Hernández-Verón,&nbsp;Natalia Romero-Álvarez","doi":"10.1002/mma.8336","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the simplest quadratic matrix equation: \n<math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n <mo>=</mo>\n <msup>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>+</mo>\n <mi>B</mi>\n <mi>X</mi>\n <mo>+</mo>\n <mi>C</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ \\mathcal{Q}(X)={X}^2+ BX+C=0 $$</annotation>\n </semantics></math>. We transform this equation into an equivalent fixed-point equation, and based on it, we construct the Krasnoselskij method. From this transformation, we can obtain iterative schemes more accurate than the successive approximation method. Moreover, under suitable conditions, we establish different results for the existence and localization of a solution for this equation with the Krasnoselskij method. Finally, we see numerically that the predictor–corrector iterative scheme, with the Krasnoselskij method as a predictor and the Newton method as corrector method, can improve the numerical application of the Newton method when approximating a solution of the quadratic matrix equation.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"45 16","pages":"9787-9798"},"PeriodicalIF":1.8000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mma.8336","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.8336","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the simplest quadratic matrix equation: Q ( X ) = X 2 + B X + C = 0 $$ \mathcal{Q}(X)={X}^2+ BX+C=0 $$ . We transform this equation into an equivalent fixed-point equation, and based on it, we construct the Krasnoselskij method. From this transformation, we can obtain iterative schemes more accurate than the successive approximation method. Moreover, under suitable conditions, we establish different results for the existence and localization of a solution for this equation with the Krasnoselskij method. Finally, we see numerically that the predictor–corrector iterative scheme, with the Krasnoselskij method as a predictor and the Newton method as corrector method, can improve the numerical application of the Newton method when approximating a solution of the quadratic matrix equation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于用Krasnoselskij方法求解二次矩阵方程的不动点型变换
本文研究了最简单的二次矩阵方程:Q (x) = x2 + bx + c = 0$$ \mathcal{Q}(X)={X}^2+ BX+C=0 $$。将该方程转化为等价的不动点方程,并在此基础上构造Krasnoselskij方法。通过这种变换,我们可以得到比逐次逼近法更精确的迭代格式。此外,在适当的条件下,我们用Krasnoselskij方法建立了该方程解的存在性和局域性的不同结果。最后,我们在数值上看到,以Krasnoselskij方法作为预测器,牛顿方法作为校正器的预测-校正迭代方案可以改善牛顿方法在近似二次矩阵方程解时的数值应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
期刊最新文献
Issue Information Issue Information Issue Information On Bounds for Norms of Reparameterized ReLU Artificial Neural Network Parameters: Sums of Fractional Powers of the Lipschitz Norm Control the Network Parameter Vector Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1