graphiclasso: Graphical lasso for learning sparse inverse-covariance matrices

IF 3.2 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Stata Journal Pub Date : 2022-09-01 DOI:10.1177/1536867X221124538
A. Dallakyan
{"title":"graphiclasso: Graphical lasso for learning sparse inverse-covariance matrices","authors":"A. Dallakyan","doi":"10.1177/1536867X221124538","DOIUrl":null,"url":null,"abstract":"In modern multivariate statistics, where high-dimensional datasets are ubiquitous, learning large (inverse-) covariance matrices is imperative for data analysis. A popular approach to estimating a large inverse-covariance matrix is to regularize the Gaussian log-likelihood function by imposing a convex penalty function. In a seminal article, Friedman, Hastie, and Tibshirani (2008, Biostatistics 9: 432–441) proposed a graphical lasso (Glasso) algorithm to efficiently estimate sparse inverse-covariance matrices from the convex regularized log-likelihood function. In this article, I first explore the Glasso algorithm and then introduce a new graphiclasso command for the large inverse-covariance matrix estimation. Moreover, I provide a useful command for tuning parameter selection in the Glasso algorithm using the extended Bayesian information criterion, the Akaike information criterion, and cross-validation. I demonstrate the use of Glasso using simulation results and real-world data analysis.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"625 - 642"},"PeriodicalIF":3.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X221124538","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In modern multivariate statistics, where high-dimensional datasets are ubiquitous, learning large (inverse-) covariance matrices is imperative for data analysis. A popular approach to estimating a large inverse-covariance matrix is to regularize the Gaussian log-likelihood function by imposing a convex penalty function. In a seminal article, Friedman, Hastie, and Tibshirani (2008, Biostatistics 9: 432–441) proposed a graphical lasso (Glasso) algorithm to efficiently estimate sparse inverse-covariance matrices from the convex regularized log-likelihood function. In this article, I first explore the Glasso algorithm and then introduce a new graphiclasso command for the large inverse-covariance matrix estimation. Moreover, I provide a useful command for tuning parameter selection in the Glasso algorithm using the extended Bayesian information criterion, the Akaike information criterion, and cross-validation. I demonstrate the use of Glasso using simulation results and real-world data analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
graphiclasso:学习稀疏逆协方差矩阵的图形套索
在现代多元统计中,高维数据集无处不在,学习大型(逆)协方差矩阵对于数据分析是必不可少的。估计大型逆协方差矩阵的常用方法是通过施加凸惩罚函数来正则化高斯对数似然函数。在一篇开创性的文章中,Friedman, Hastie和Tibshirani (2008, Biostatistics 9: 432-441)提出了一种图形lasso (Glasso)算法来有效地从凸正则化对数似然函数估计稀疏逆协方差矩阵。在本文中,我首先探讨了Glasso算法,然后介绍了一个新的graphiclasso命令,用于大型逆协方差矩阵估计。此外,我还提供了一个有用的命令,用于使用扩展贝叶斯信息标准、赤池信息标准和交叉验证来调优Glasso算法中的参数选择。我通过模拟结果和实际数据分析来演示Glasso的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stata Journal
Stata Journal 数学-统计学与概率论
CiteScore
7.80
自引率
4.20%
发文量
44
审稿时长
>12 weeks
期刊介绍: The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.
期刊最新文献
Cluster randomized controlled trial analysis at the cluster level: The clan command. mpitb: A toolbox for multidimensional poverty indices Iterative intercensal single-decrement life tables using Stata Facilities for optimizing and designing multiarm multistage (MAMS) randomized controlled trials with binary outcomes hdps: A suite of commands for applying high-dimensional propensity-score approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1