Sparse block-structured random matrices: universality

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Physics Complexity Pub Date : 2023-03-23 DOI:10.1088/2632-072X/acc71a
G. M. Cicuta, M. Pernici
{"title":"Sparse block-structured random matrices: universality","authors":"G. M. Cicuta, M. Pernici","doi":"10.1088/2632-072X/acc71a","DOIUrl":null,"url":null,"abstract":"We study ensembles of sparse block-structured random matrices generated from the adjacency matrix of a Erdös–Renyi random graph with N vertices of average degree Z, inserting a real symmetric d × d random block at each non-vanishing entry. We consider several ensembles of random block matrices with rank r < d and with maximal rank, r = d. The spectral moments of the sparse block-structured random matrix are evaluated for N→∞ , d finite or infinite, and several probability distributions for the blocks (e.g. fixed trace, bounded trace and Gaussian). Because of the concentration of the probability measure in the d→∞ limit, the spectral moments are independent of the probability measure of the blocks (with mild assumptions of isotropy, smoothness and sub-Gaussian tails). The effective medium approximation is the limiting spectral density of the sparse block-structured random ensembles with finite rank. Analogous classes of universality hold for the Laplacian sparse block-structured ensemble. The same limiting distributions are obtained using random regular graphs instead of Erdös–Renyi graphs.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072X/acc71a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We study ensembles of sparse block-structured random matrices generated from the adjacency matrix of a Erdös–Renyi random graph with N vertices of average degree Z, inserting a real symmetric d × d random block at each non-vanishing entry. We consider several ensembles of random block matrices with rank r < d and with maximal rank, r = d. The spectral moments of the sparse block-structured random matrix are evaluated for N→∞ , d finite or infinite, and several probability distributions for the blocks (e.g. fixed trace, bounded trace and Gaussian). Because of the concentration of the probability measure in the d→∞ limit, the spectral moments are independent of the probability measure of the blocks (with mild assumptions of isotropy, smoothness and sub-Gaussian tails). The effective medium approximation is the limiting spectral density of the sparse block-structured random ensembles with finite rank. Analogous classes of universality hold for the Laplacian sparse block-structured ensemble. The same limiting distributions are obtained using random regular graphs instead of Erdös–Renyi graphs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏块结构随机矩阵:通用性
我们研究了由具有N个平均度为Z的顶点的Erdös–Renyi随机图的邻接矩阵生成的稀疏块结构随机矩阵的集合,插入了实对称d × d随机块。我们考虑秩为r的随机块矩阵的几个集合 < d和具有最大秩的r = d.对于N,评估稀疏块结构随机矩阵的谱矩→∞ , d有限或无限,以及块的几个概率分布(例如,固定轨迹、有界轨迹和高斯)。由于d中概率测度的集中→∞ 极限,谱矩与块的概率测度无关(具有各向同性、光滑性和亚高斯尾的温和假设)。有效介质近似是具有有限秩的稀疏块结构随机系综的极限谱密度。拉普拉斯稀疏块结构系综具有类似的普适性类。使用随机正则图代替Erdös–Renyi图获得了相同的极限分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
期刊最新文献
Persistent Mayer Dirac. Fitness-based growth of directed networks with hierarchy The ultrametric backbone is the union of all minimum spanning forests. Exploring the space of graphs with fixed discrete curvatures Augmentations of Forman’s Ricci curvature and their applications in community detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1