Inexpensive and rapid fabrication of PDMS microfluidic devices for biological testing applications using low cost commercially available 3D printers

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Micromechanics and Microengineering Pub Date : 2023-08-22 DOI:10.1088/1361-6439/acf2a7
Megala Ramasamy, Brandon Ho, C. Phan, N. Qin, C. Ren, Lyndon Jones
{"title":"Inexpensive and rapid fabrication of PDMS microfluidic devices for biological testing applications using low cost commercially available 3D printers","authors":"Megala Ramasamy, Brandon Ho, C. Phan, N. Qin, C. Ren, Lyndon Jones","doi":"10.1088/1361-6439/acf2a7","DOIUrl":null,"url":null,"abstract":"Polydimethylsiloxane (PDMS) elastomers have been extensively used in the development of microfluidic devices, capable of miniaturizing biomolecular and cellular assays to the microlitre and nanolitre range, thereby increasing the throughput of experimentation. PDMS has been widely used due to its optical clarity and biocompatibility, among other desirable physical and chemical properties. Despite the widespread use of PDMS in microfluidic devices, the fabrication process typically via soft lithography technology requires specialized facilities, instruments, and materials only available in a limited number of laboratories. To expand microfluidic research capabilities to a greater scientific population, we developed and characterized a simple and robust method of fabricating relatively inexpensive PDMS microfluidic devices using readily available reagents and commercially available three-dimensional (3D) printers. The moulds produced from the 3D printers resolve designed microfluidic channel features accurately with high resolution (>100 µm). The critical physical and chemical post-processing modifications we outline here are required to generate functional and optically clear microfluidic devices.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/acf2a7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Polydimethylsiloxane (PDMS) elastomers have been extensively used in the development of microfluidic devices, capable of miniaturizing biomolecular and cellular assays to the microlitre and nanolitre range, thereby increasing the throughput of experimentation. PDMS has been widely used due to its optical clarity and biocompatibility, among other desirable physical and chemical properties. Despite the widespread use of PDMS in microfluidic devices, the fabrication process typically via soft lithography technology requires specialized facilities, instruments, and materials only available in a limited number of laboratories. To expand microfluidic research capabilities to a greater scientific population, we developed and characterized a simple and robust method of fabricating relatively inexpensive PDMS microfluidic devices using readily available reagents and commercially available three-dimensional (3D) printers. The moulds produced from the 3D printers resolve designed microfluidic channel features accurately with high resolution (>100 µm). The critical physical and chemical post-processing modifications we outline here are required to generate functional and optically clear microfluidic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
廉价和快速制造PDMS微流体装置的生物测试应用,使用低成本的商用3D打印机
聚二甲基硅氧烷(PDMS)弹性体已被广泛用于微流体装置的开发,能够将生物分子和细胞测定小型化至微升和纳升范围,从而提高实验的吞吐量。PDMS由于其光学清晰度和生物相容性以及其他所需的物理和化学性质而被广泛使用。尽管PDMS在微流体设备中广泛使用,但通常通过软光刻技术的制造过程需要专门的设施、仪器和材料,这些设施、仪器、材料只能在有限数量的实验室中获得。为了将微流体研究能力扩展到更多的科学人群,我们开发并表征了一种简单而稳健的方法,即使用现成的试剂和商用三维(3D)打印机制造相对便宜的PDMS微流体设备。3D打印机生产的模具以高分辨率(>100µm)准确解析设计的微流体通道特征。我们在这里概述的关键物理和化学后处理修饰是生成功能性和光学透明的微流体设备所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
期刊最新文献
A highly accurate analytical method for determination of the vibrational frequency of N/MEMS with electrostatic and van der Waals interaction forces Design and performance analysis of an embedded amplified piezoelectric jetting dispensing valve Heterogeneous micro-architectonic integration of SU-8 and highly entangled polyacrylamide hydrogel to realize cut-resistant soft superhydrophobic surfaces Fabrication of ultra-low expansion glass based double paddle oscillator Electrohydrodynamic jet printed templates for hot embossing of microfluidic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1