Bingxian Chen, Yuanxiu Peng, Xuedong Yang, Jun Liu
{"title":"Delayed germination of Brassica parachinensis seeds by coumarin involves decreased GA4 production and a consequent reduction of ROS accumulation","authors":"Bingxian Chen, Yuanxiu Peng, Xuedong Yang, Jun Liu","doi":"10.1017/S0960258521000167","DOIUrl":null,"url":null,"abstract":"Abstract The plant allelochemical coumarin effectively inhibits the germination of Brassica parachinensis (B. parachinensis) seeds. Quantification of endogenous phytohormones showed that contents of abscisic acid (ABA), ABA glucose ester, gibberellin A20 (GA20), GA3, GA15, GA24, GA9 and GA4 were higher in germinating seeds than in seedlings. Moreover, the presence of coumarin significantly reduced the content of bioactive GA4 which is thought to positively regulate seed germination. Histochemical staining and spectrophotometry of reactive oxygen species (ROS) revealed that exogenous GA3 and GA4+7 could effectively promote the production of endogenous ROS during germination and that the GA synthesis inhibitor paclobutrazol could effectively inhibit production of ROS. Coumarin significantly inhibited the accumulation of ROS, especially superoxide anion radical (${\\rm O}_2^{{\\cdot}{-}} $). This inhibitory effect could be restored by the addition of exogenous GA3 and GA4+7. Coumarin also inhibited the activity of the ROS-degrading enzymes such as superoxide dismutase, catalase and peroxidase as well as β-amylase in seeds and seedlings. Taken together, we propose a model for the regulation of seed germination in B. parachinensis by coumarin, Gas and ROS, in which coumarin may delay seed germination by reducing endogenous GA4, thus decreasing the accumulation of ROS.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"31 1","pages":"224 - 235"},"PeriodicalIF":2.1000,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seed Science Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0960258521000167","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 7
Abstract
Abstract The plant allelochemical coumarin effectively inhibits the germination of Brassica parachinensis (B. parachinensis) seeds. Quantification of endogenous phytohormones showed that contents of abscisic acid (ABA), ABA glucose ester, gibberellin A20 (GA20), GA3, GA15, GA24, GA9 and GA4 were higher in germinating seeds than in seedlings. Moreover, the presence of coumarin significantly reduced the content of bioactive GA4 which is thought to positively regulate seed germination. Histochemical staining and spectrophotometry of reactive oxygen species (ROS) revealed that exogenous GA3 and GA4+7 could effectively promote the production of endogenous ROS during germination and that the GA synthesis inhibitor paclobutrazol could effectively inhibit production of ROS. Coumarin significantly inhibited the accumulation of ROS, especially superoxide anion radical (${\rm O}_2^{{\cdot}{-}} $). This inhibitory effect could be restored by the addition of exogenous GA3 and GA4+7. Coumarin also inhibited the activity of the ROS-degrading enzymes such as superoxide dismutase, catalase and peroxidase as well as β-amylase in seeds and seedlings. Taken together, we propose a model for the regulation of seed germination in B. parachinensis by coumarin, Gas and ROS, in which coumarin may delay seed germination by reducing endogenous GA4, thus decreasing the accumulation of ROS.
期刊介绍:
Seed Science Research, the official journal of the International Society for Seed Science, is a leading international journal featuring high-quality original papers and review articles on the fundamental aspects of seed science, reviewed by internationally distinguished editors. The emphasis is on the physiology, biochemistry, molecular biology and ecology of seeds.