Combination of Coarse-Grained Procedure and Fractal Dimension for Epileptic EEG Classification

Dien Rahmawati, Achmad Rizal, D. K. Silalahi
{"title":"Combination of Coarse-Grained Procedure and Fractal Dimension for Epileptic EEG Classification","authors":"Dien Rahmawati, Achmad Rizal, D. K. Silalahi","doi":"10.22146/IJCCS.69845","DOIUrl":null,"url":null,"abstract":"  Epilepsy, cured by some offered treatments such as medication, surgery, and dietary plan, is a neurological brain disorder due to disturbed nerve cell activity characterized by repeated seizures. Electroencephalographic (EEG) signal processing detects and classifies these seizures as one of the abnormality types in the brain within temporal and spectral content. The proposed method in this paper employed a combination of two feature extractions, namely coarse-grained and fractal dimension, a challenge to obtain a highly accurate procedure to evaluate and predict the epileptic EEG signal of normal, interictal, and seizure classes. The result of classification accuracy using variance fractal dimension (VFD) and quadratic support machine vector (SVM) with a number scale of 10 is 99% as the highest one, excellent performance of the predictive model in terms of the error rate. In addition, a higher scale number does not determine a higher accuracy in this study.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/IJCCS.69845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

  Epilepsy, cured by some offered treatments such as medication, surgery, and dietary plan, is a neurological brain disorder due to disturbed nerve cell activity characterized by repeated seizures. Electroencephalographic (EEG) signal processing detects and classifies these seizures as one of the abnormality types in the brain within temporal and spectral content. The proposed method in this paper employed a combination of two feature extractions, namely coarse-grained and fractal dimension, a challenge to obtain a highly accurate procedure to evaluate and predict the epileptic EEG signal of normal, interictal, and seizure classes. The result of classification accuracy using variance fractal dimension (VFD) and quadratic support machine vector (SVM) with a number scale of 10 is 99% as the highest one, excellent performance of the predictive model in terms of the error rate. In addition, a higher scale number does not determine a higher accuracy in this study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粗粒度过程与分形维数相结合的癫痫脑电分类
癫痫是一种神经性大脑疾病,可通过药物、手术和饮食计划等治疗方法治愈,其特征是神经细胞活动紊乱,反复发作。脑电图(EEG)信号处理检测这些癫痫发作,并将其分类为大脑中时间和频谱内容内的异常类型之一。本文提出的方法结合了两种特征提取,即粗粒度和分形维数,这对获得高精度的程序来评估和预测正常、发作间期和癫痫发作类别的癫痫EEG信号是一个挑战。使用方差分形维数(VFD)和数字尺度为10的二次支持机向量(SVM)的分类准确率最高,为99%,预测模型在错误率方面表现优异。此外,在本研究中,较高的标度数并不能确定较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
期刊最新文献
Identify Reviews of Pedulilindungi Applications using Topic Modeling with Latent Dirichlet Allocation Method Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction Optimizing ODP Device Placement on FTTH Network Using Genetic Algorithms Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms ESSAY ANSWER CLASSIFICATION WITH SMOTE RANDOM FOREST AND ADABOOST IN AUTOMATED ESSAY SCORING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1