{"title":"Design of fractional order proportional integral controller for load frequency control of multi area power system under deregulated environment","authors":"K. V. Kumar, V. Ganesh","doi":"10.1504/ijpec.2020.10027376","DOIUrl":null,"url":null,"abstract":"The main objective of presented article is here to focus how efficiently minimise the deviations in frequency and area control error caused by load fluctuations and uncertainties in load under the deregulated power system. This work is carried out to eliminate the frequency errors by using fractional order proportional integral (FOPI) controller under deregulated environment by considering the effect of one possible bilateral contract scenario. Because of system nonlinearities, uncertainties and continuously fluctuant load demand the design of these controllers is quite complicated in deregulated environment. The proposed work is to enhance the system parameters like transmitted line power, frequency deviation error, and area control error (ACE) using fractional order PI controller for hydro-thermal system and thermal-thermal system under deregulated environment. The results have been analysed with classical integer order PI controller and FOPI controller. It is observed that the efficacy of the results is satisfied and improved when compared with previous work.","PeriodicalId":38524,"journal":{"name":"International Journal of Power and Energy Conversion","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power and Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijpec.2020.10027376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1
Abstract
The main objective of presented article is here to focus how efficiently minimise the deviations in frequency and area control error caused by load fluctuations and uncertainties in load under the deregulated power system. This work is carried out to eliminate the frequency errors by using fractional order proportional integral (FOPI) controller under deregulated environment by considering the effect of one possible bilateral contract scenario. Because of system nonlinearities, uncertainties and continuously fluctuant load demand the design of these controllers is quite complicated in deregulated environment. The proposed work is to enhance the system parameters like transmitted line power, frequency deviation error, and area control error (ACE) using fractional order PI controller for hydro-thermal system and thermal-thermal system under deregulated environment. The results have been analysed with classical integer order PI controller and FOPI controller. It is observed that the efficacy of the results is satisfied and improved when compared with previous work.
期刊介绍:
IJPEC highlights the latest trends in research in the field of power generation, transmission and distribution. Currently there exist significant challenges in the power sector, particularly in deregulated/restructured power markets. A key challenge to the operation, control and protection of the power system is the proliferation of power electronic devices within power systems. The main thrust of IJPEC is to disseminate the latest research trends in the power sector as well as in energy conversion technologies. Topics covered include: -Power system modelling and analysis -Computing and economics -FACTS and HVDC -Challenges in restructured energy systems -Power system control, operation, communications, SCADA -Power system relaying/protection -Energy management systems/distribution automation -Applications of power electronics to power systems -Power quality -Distributed generation and renewable energy sources -Electrical machines and drives -Utilisation of electrical energy -Modelling and control of machines -Fault diagnosis in machines and drives -Special machines