{"title":"SYNERGIZED THERMAL STABILIZATION EFFECT OF ACID ACCEPTORS ON PEROXIDE CROSSLINKED CHLOROPRENE RUBBER","authors":"Zahra Shahroodi, A. Katbab","doi":"10.5254/rct.22.77945","DOIUrl":null,"url":null,"abstract":"\n Chloroprene rubber (CR) vulcanizates have been widely used in various industrial applications due to their excellent mechanical properties such as elasticity, elongation at break, and superior resistance to chemicals, flame, etc. Because of the specific microstructures of CR, it is mainly vulcanized by metal oxide vulcanizing systems. However, CR undergoes rapid thermal degradation when it is crosslinked by peroxide curing systems at high temperatures. Although peroxide curing systems such as dicumyl peroxide (DCP) have attracted tremendous attention in the vulcanization of various saturated and unsaturated elastomers to achieve high-performance engineering properties, it is avoided for CR due to the occurrence of thermal decomposition, which is catalyzed by hydrochloric acid (HCl) vapors released during crosslinking. In the present work, by exploiting different acid acceptors, attempts have been made to design a vulcanizing system composed of inorganic–organic materials as acid acceptors to increase the potential of hindering the thermal decomposition in the CR phase. The designed system provides an accelerated system with a high crosslink density and mechanical properties comparable to metal oxide cured CR with elongation at break of ∼1000% and tensile strength of 10.3 MPa. The extent of thermal stabilization in the CR phase provided by the designed acid acceptor system was studied with thermogravimetric analysis.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rubber Chemistry and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5254/rct.22.77945","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Chloroprene rubber (CR) vulcanizates have been widely used in various industrial applications due to their excellent mechanical properties such as elasticity, elongation at break, and superior resistance to chemicals, flame, etc. Because of the specific microstructures of CR, it is mainly vulcanized by metal oxide vulcanizing systems. However, CR undergoes rapid thermal degradation when it is crosslinked by peroxide curing systems at high temperatures. Although peroxide curing systems such as dicumyl peroxide (DCP) have attracted tremendous attention in the vulcanization of various saturated and unsaturated elastomers to achieve high-performance engineering properties, it is avoided for CR due to the occurrence of thermal decomposition, which is catalyzed by hydrochloric acid (HCl) vapors released during crosslinking. In the present work, by exploiting different acid acceptors, attempts have been made to design a vulcanizing system composed of inorganic–organic materials as acid acceptors to increase the potential of hindering the thermal decomposition in the CR phase. The designed system provides an accelerated system with a high crosslink density and mechanical properties comparable to metal oxide cured CR with elongation at break of ∼1000% and tensile strength of 10.3 MPa. The extent of thermal stabilization in the CR phase provided by the designed acid acceptor system was studied with thermogravimetric analysis.
期刊介绍:
The scope of RC&T covers:
-Chemistry and Properties-
Mechanics-
Materials Science-
Nanocomposites-
Biotechnology-
Rubber Recycling-
Green Technology-
Characterization and Simulation.
Published continuously since 1928, the journal provides the deepest archive of published research in the field. Rubber Chemistry & Technology is read by scientists and engineers in academia, industry and government.