{"title":"Adaptive Proxy-based Robust Production Optimization with Multilayer Perceptron","authors":"Cuthbert Shang Wui Ng, Ashkan Jahanbani Ghahfarokhi","doi":"10.1016/j.acags.2022.100103","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning (ML) has been a technique employed to build data-driven models that can map the relationship between the input and output data provided. ML-based data-driven models offer an alternative path to solving optimization problems, which are conventionally resolved by applying simulation models. Higher computational cost is induced if the simulation model is computationally intensive. Such a situation aptly applies to petroleum engineering, especially when different geological realizations of numerical reservoir simulation (NRS) models are considered for production optimization. Therefore, data-driven models are suggested as a substitute for NRS. In this work, we demonstrated how multilayer perceptron could be implemented to build data-driven models based on 10 realizations of the Egg Model. These models were then coupled with two nature-inspired algorithms, viz. particle swarm optimization and grey wolf optimizer to solve waterflooding optimization. These data-driven models were adaptively re-trained by applying a training database that was updated via the addition of extra samples retrieved from optimization with the proxy models. The details of the methodology will be divulged in the paper. According to the results obtained, we could deduce that the methodology generated reliable data-driven models to solve the optimization problem, as justified by the excellent performance of the ML-based proxy model (with a coefficient of determination, R<sup>2</sup> exceeding 0.98 in training, testing, and blind validation) and accurate optimization result (less than 1% error between the Expected Net Present Values optimized using NRS and proxy models). This study aids in an enhanced understanding of implementing adaptive training in tandem with optimization in ML-based proxy modeling.</p></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"16 ","pages":"Article 100103"},"PeriodicalIF":2.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590197422000258/pdfft?md5=a172463c1b387d74115d3915a128258e&pid=1-s2.0-S2590197422000258-main.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197422000258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 7
Abstract
Machine learning (ML) has been a technique employed to build data-driven models that can map the relationship between the input and output data provided. ML-based data-driven models offer an alternative path to solving optimization problems, which are conventionally resolved by applying simulation models. Higher computational cost is induced if the simulation model is computationally intensive. Such a situation aptly applies to petroleum engineering, especially when different geological realizations of numerical reservoir simulation (NRS) models are considered for production optimization. Therefore, data-driven models are suggested as a substitute for NRS. In this work, we demonstrated how multilayer perceptron could be implemented to build data-driven models based on 10 realizations of the Egg Model. These models were then coupled with two nature-inspired algorithms, viz. particle swarm optimization and grey wolf optimizer to solve waterflooding optimization. These data-driven models were adaptively re-trained by applying a training database that was updated via the addition of extra samples retrieved from optimization with the proxy models. The details of the methodology will be divulged in the paper. According to the results obtained, we could deduce that the methodology generated reliable data-driven models to solve the optimization problem, as justified by the excellent performance of the ML-based proxy model (with a coefficient of determination, R2 exceeding 0.98 in training, testing, and blind validation) and accurate optimization result (less than 1% error between the Expected Net Present Values optimized using NRS and proxy models). This study aids in an enhanced understanding of implementing adaptive training in tandem with optimization in ML-based proxy modeling.