{"title":"Supsim: a Python package and a web-based JavaScript tool to address the theoretical complexities in two-predictor suppression situations","authors":"M. Nazifi, Hamid Fadishei","doi":"10.2478/stattrans-2022-0049","DOIUrl":null,"url":null,"abstract":"Abstract Two-predictor suppression situations continue to produce uninterpretable conditions in linear regression. In an attempt to address the theoretical complexities related to suppression situations, the current study introduces two different versions of a software called suppression simulator (Supsim): a) the command-line Python package, and b) the web-based JavaScript tool, both of which are able to simulate numerous random two-predictor models (RTMs). RTMs are randomly generated, normally distributed data vectors x1, x2, and y simulated in such a way that regressing y on both x1 and x2 results in the occurrence of numerous suppression and non-suppression situations. The web-based Supsim requires no coding skills and additionally, it provides users with 3D scatterplots of the simulated RTMs. This study shows that comparing 3D scatterplots of different suppression and non-suppression situations provides important new insights into the underlying mechanisms of two-predictor suppression situations. An important focus is on the comparison of 3D scatterplots of certain enhancement situations called Hamilton’s extreme example with those of redundancy situations. Such a comparison suggests that the basic mathematical concepts of two-predictor suppression situations need to be reconsidered with regard to the important issue of the statistical control function.","PeriodicalId":37985,"journal":{"name":"Statistics in Transition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Transition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/stattrans-2022-0049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Two-predictor suppression situations continue to produce uninterpretable conditions in linear regression. In an attempt to address the theoretical complexities related to suppression situations, the current study introduces two different versions of a software called suppression simulator (Supsim): a) the command-line Python package, and b) the web-based JavaScript tool, both of which are able to simulate numerous random two-predictor models (RTMs). RTMs are randomly generated, normally distributed data vectors x1, x2, and y simulated in such a way that regressing y on both x1 and x2 results in the occurrence of numerous suppression and non-suppression situations. The web-based Supsim requires no coding skills and additionally, it provides users with 3D scatterplots of the simulated RTMs. This study shows that comparing 3D scatterplots of different suppression and non-suppression situations provides important new insights into the underlying mechanisms of two-predictor suppression situations. An important focus is on the comparison of 3D scatterplots of certain enhancement situations called Hamilton’s extreme example with those of redundancy situations. Such a comparison suggests that the basic mathematical concepts of two-predictor suppression situations need to be reconsidered with regard to the important issue of the statistical control function.
期刊介绍:
Statistics in Transition (SiT) is an international journal published jointly by the Polish Statistical Association (PTS) and the Central Statistical Office of Poland (CSO/GUS), which sponsors this publication. Launched in 1993, it was issued twice a year until 2006; since then it appears - under a slightly changed title, Statistics in Transition new series - three times a year; and after 2013 as a regular quarterly journal." The journal provides a forum for exchange of ideas and experience amongst members of international community of statisticians, data producers and users, including researchers, teachers, policy makers and the general public. Its initially dominating focus on statistical issues pertinent to transition from centrally planned to a market-oriented economy has gradually been extended to embracing statistical problems related to development and modernization of the system of public (official) statistics, in general.