Novel Features Extraction for Fault Detection Using Thermography Characteristics and IV Measurements of CIGS Thin-Film Module

Q3 Engineering Instrumentation Mesure Metrologie Pub Date : 2020-11-15 DOI:10.18280/i2m.190501
Reham A. Eltuhamy, M. Rady, K. Ibrahim, Haitham A. Mahmoud
{"title":"Novel Features Extraction for Fault Detection Using Thermography Characteristics and IV Measurements of CIGS Thin-Film Module","authors":"Reham A. Eltuhamy, M. Rady, K. Ibrahim, Haitham A. Mahmoud","doi":"10.18280/i2m.190501","DOIUrl":null,"url":null,"abstract":"Regarding the fault diagnosis of Copper Indium Gallium Selenide (CIGS) PV modules, previously published articles focused on employing statistical analysis of thermography images. This approach failed in many cases to distinguish among fault types. This article presents a novel methodology to diagnose and predict faults of thin-film CIGS PV modules using infrared thermography analysis combined with measurements of I-V characteristics. The proposed methodology encompasses a comprehensive site work to capture images that cover many fault types of the PV module under study. The novelty of the technique depends on utilizing processing and analysis of the captured images using new proposed mathematical parameters to extract different faults’ features. Using I-V measurements combined with thermography analysis, the differences between different types of faults are detected. Then, a general classification matrix of CIGS fault detection and diagnosis, using features based on mathematical parameters and IV measurements has been established. Results show that the analysis of the temperature distribution is proved to be insufficient to identify specific modes of different faults. In addition, the proposed procedure for fault detection and classification, which depends on the pattern of faults, can be used for any type of PV module. This results in more reliance on the proposed technique to increase the confidence level of fault detection.","PeriodicalId":38637,"journal":{"name":"Instrumentation Mesure Metrologie","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instrumentation Mesure Metrologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/i2m.190501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

Regarding the fault diagnosis of Copper Indium Gallium Selenide (CIGS) PV modules, previously published articles focused on employing statistical analysis of thermography images. This approach failed in many cases to distinguish among fault types. This article presents a novel methodology to diagnose and predict faults of thin-film CIGS PV modules using infrared thermography analysis combined with measurements of I-V characteristics. The proposed methodology encompasses a comprehensive site work to capture images that cover many fault types of the PV module under study. The novelty of the technique depends on utilizing processing and analysis of the captured images using new proposed mathematical parameters to extract different faults’ features. Using I-V measurements combined with thermography analysis, the differences between different types of faults are detected. Then, a general classification matrix of CIGS fault detection and diagnosis, using features based on mathematical parameters and IV measurements has been established. Results show that the analysis of the temperature distribution is proved to be insufficient to identify specific modes of different faults. In addition, the proposed procedure for fault detection and classification, which depends on the pattern of faults, can be used for any type of PV module. This results in more reliance on the proposed technique to increase the confidence level of fault detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用CIGS薄膜模块的热成像特性和IV测量进行故障检测的新特征提取
关于铜铟镓硒(CIGS)光伏组件的故障诊断,之前发表的文章主要是利用热成像图像进行统计分析。这种方法在许多情况下无法区分故障类型。本文提出了一种利用红外热成像分析结合I-V特性测量来诊断和预测薄膜CIGS光伏组件故障的新方法。提出的方法包括全面的现场工作,以捕获涵盖所研究的光伏组件的许多故障类型的图像。该技术的新颖性在于利用新提出的数学参数对捕获的图像进行处理和分析,以提取不同的断层特征。利用I-V测量结合热成像分析,检测不同类型故障之间的差异。然后,建立了基于数学参数和IV测量的特征的CIGS故障检测与诊断的通用分类矩阵。结果表明,对温度分布的分析不足以识别不同断层的具体模式。此外,所提出的基于故障模式的故障检测和分类程序可用于任何类型的光伏组件。这导致对所提出的技术的更多依赖,以提高故障检测的置信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Instrumentation Mesure Metrologie
Instrumentation Mesure Metrologie Engineering-Engineering (miscellaneous)
CiteScore
1.70
自引率
0.00%
发文量
25
期刊最新文献
A Device for Measuring the Electrical Conductivity of Liquids Using Phase Sensitive Detection Technique Design and Evaluation of a Spider Web-Like Single-Axis Micro-Electro-Mechanical Systems Accelerometer with High Sensitivity and Fast Response Investigating Fluid Flow Regimes: A Novel Design and Implementation of Bernoulli’s Apparatus Metrological Characterization of Spring Impact Hammer Calibration Advanced Sensor-Based Cap Cooling System for Mitigating Chemotherapy-Induced Hair Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1