{"title":"TMTrans: texture mixed transformers for medical image segmentation","authors":"Lifang Chen, Tao Wang, Hongze Ge","doi":"10.3233/aic-230089","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of skin cancer is crucial for doctors to identify and treat lesions. Researchers are increasingly using auxiliary modules with Transformers to optimize the model’s ability to process global context information and reduce detail loss. Additionally, diseased skin texture differs from normal skin, and pre-processed texture images can reflect the shape and edge information of the diseased area. We propose TMTrans (Texture Mixed Transformers). We have innovatively designed a dual axis attention mechanism (IEDA-Trans) that considers both global context and local information, as well as a multi-scale fusion (MSF) module that associates surface shape information with deep semantics. Additionally, we utilize TE(Texture Enhance) and SK(Skip connection) modules to bridge the semantic gap between encoders and decoders and enhance texture features. Our model was evaluated on multiple skin datasets, including ISIC 2016/2017/2018 and PH2, and outperformed other convolution and Transformer-based models. Furthermore, we conducted a generalization test on the 2018 DSB dataset, which resulted in a nearly 2% improvement in the Dice index, demonstrating the effectiveness of our proposed model.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/aic-230089","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate segmentation of skin cancer is crucial for doctors to identify and treat lesions. Researchers are increasingly using auxiliary modules with Transformers to optimize the model’s ability to process global context information and reduce detail loss. Additionally, diseased skin texture differs from normal skin, and pre-processed texture images can reflect the shape and edge information of the diseased area. We propose TMTrans (Texture Mixed Transformers). We have innovatively designed a dual axis attention mechanism (IEDA-Trans) that considers both global context and local information, as well as a multi-scale fusion (MSF) module that associates surface shape information with deep semantics. Additionally, we utilize TE(Texture Enhance) and SK(Skip connection) modules to bridge the semantic gap between encoders and decoders and enhance texture features. Our model was evaluated on multiple skin datasets, including ISIC 2016/2017/2018 and PH2, and outperformed other convolution and Transformer-based models. Furthermore, we conducted a generalization test on the 2018 DSB dataset, which resulted in a nearly 2% improvement in the Dice index, demonstrating the effectiveness of our proposed model.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.