Saul F Moreno, J. Hinojosa, V. M. Maytorena, Jose Ma Navarro, Adolfo Vazquez
{"title":"THERMAL PERFORMANCE AND WATER PRODUCTION IN A SOLAR STILL WITH AN ENERGY STORAGE MATERIAL UNDER DIFFERENT CONCENTRATIONS OF SALT","authors":"Saul F Moreno, J. Hinojosa, V. M. Maytorena, Jose Ma Navarro, Adolfo Vazquez","doi":"10.1115/1.4056124","DOIUrl":null,"url":null,"abstract":"\n The current work reports a numerical investigation of the water produced and thermal performance of a solar still (SS). Using a SS for desalination is a proposal for low-income remote communities needing potable water. The study deals with the SS under five different concentrations of salt (0, 5, 10, 20, and 35 g/kg). Previous experimental results reported in the literature indicate that the increase in salinity leads to a decrease in productivity, so PCM was added under the water basin to counter the reduction. The mathematical model and numerical methodology were validated by comparing them with experimental results reported in the literature. The relative difference between temperatures was less than 2%, and for water production, it was less than 3.5%. The present mathematical model has the novelty of utilizing the water properties as a function of temperature and salt concentration, contrary to other models that use pure water properties. The results show that daily productivity decrease when the salinity increase from 0 to 35 g/kg. For each case, the time evolution of hourly and cumulate productivity is presented, as well as water temperature and the temperature difference between water and glass. Also, the behavior of heat flux between water and PCM is analyzed. The overall efficiency is calculated for all the cases.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056124","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
The current work reports a numerical investigation of the water produced and thermal performance of a solar still (SS). Using a SS for desalination is a proposal for low-income remote communities needing potable water. The study deals with the SS under five different concentrations of salt (0, 5, 10, 20, and 35 g/kg). Previous experimental results reported in the literature indicate that the increase in salinity leads to a decrease in productivity, so PCM was added under the water basin to counter the reduction. The mathematical model and numerical methodology were validated by comparing them with experimental results reported in the literature. The relative difference between temperatures was less than 2%, and for water production, it was less than 3.5%. The present mathematical model has the novelty of utilizing the water properties as a function of temperature and salt concentration, contrary to other models that use pure water properties. The results show that daily productivity decrease when the salinity increase from 0 to 35 g/kg. For each case, the time evolution of hourly and cumulate productivity is presented, as well as water temperature and the temperature difference between water and glass. Also, the behavior of heat flux between water and PCM is analyzed. The overall efficiency is calculated for all the cases.
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.