Stationary count time series models

IF 4.4 2区 数学 Q1 STATISTICS & PROBABILITY Wiley Interdisciplinary Reviews-Computational Statistics Pub Date : 2020-02-13 DOI:10.1002/wics.1502
C. Weiß
{"title":"Stationary count time series models","authors":"C. Weiß","doi":"10.1002/wics.1502","DOIUrl":null,"url":null,"abstract":"During the last 20–30 years, there was a remarkable growth in interest on approaches for stationary count time series. We consider popular classes of models for such time series, including thinning‐based models, conditional regression models, and Hidden‐Markov models. We review and compare important members of these model families, having regard to stochastic properties such as the dispersion and autocorrelation structure. Our survey covers univariate and multivariate count data, as well as unbounded and bounded counts. We also discuss an illustrative data example. Besides this critical presentation of the current state‐of‐the‐art, some existing challenges and opportunities for future research are identified.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2020-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wics.1502","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1502","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 20

Abstract

During the last 20–30 years, there was a remarkable growth in interest on approaches for stationary count time series. We consider popular classes of models for such time series, including thinning‐based models, conditional regression models, and Hidden‐Markov models. We review and compare important members of these model families, having regard to stochastic properties such as the dispersion and autocorrelation structure. Our survey covers univariate and multivariate count data, as well as unbounded and bounded counts. We also discuss an illustrative data example. Besides this critical presentation of the current state‐of‐the‐art, some existing challenges and opportunities for future research are identified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固定计数时间序列模型
在过去的20-30年里,人们对平稳计数时间序列方法的兴趣有了显著的增长。我们考虑了这类时间序列的常用模型,包括基于稀疏的模型、条件回归模型和隐马尔可夫模型。我们回顾和比较这些模型族的重要成员,考虑到随机性质,如色散和自相关结构。我们的调查涵盖单变量和多变量计数数据,以及无界和有界计数。我们还讨论了一个说明性的数据示例。除了对当前技术状况的批判性介绍之外,还确定了未来研究的一些现有挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
31
期刊最新文献
Neuroimaging statistical approaches for determining neural correlates of Alzheimer's disease via positron emission tomography imaging. A spectrum of explainable and interpretable machine learning approaches for genomic studies Functional neuroimaging in the era of Big Data and Open Science: A modern overview Information criteria for model selection Data Integration in Causal Inference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1