O. M. Lemine, Abdulrahman Faqih, Saja Algessair, N. Madkhali, M. Hjiri, Sharif Abu Alrub, Ali Z. Alanazi, Abdulaziz Alromaeh, L. E. L. Mir
{"title":"Effect of Magnesium Ion Substitution on Physical Properties and Magnetic Induction Heating of Maghemite (γ-Fe2O3) Nanoparticles","authors":"O. M. Lemine, Abdulrahman Faqih, Saja Algessair, N. Madkhali, M. Hjiri, Sharif Abu Alrub, Ali Z. Alanazi, Abdulaziz Alromaeh, L. E. L. Mir","doi":"10.1007/s10948-023-06592-7","DOIUrl":null,"url":null,"abstract":"<div><p>We report the preparation, characterization, and magnetic hyperthermia of magnesium-doped maghemite (γ-Fe<sub>2</sub>O<sub>3</sub>) nanoparticles (NPs). XRD and Rietveld refinement reveal the formation of a single cubic phase of γ-Fe<sub>2</sub>O<sub>3</sub>, where the substitution of Fe<sup>+3</sup> located in the tetrahedral site by Mg<sup>+2</sup> did not alter the crystal structure. Magnetic measurements showed an increase of saturation for low concentration of magnesium (1% and 3%) and a decrease for 5% of magnesium. The superparamagnetism behavior and the effective anisotropy constant (<span>\\({K_{eff}}\\)</span>) were confirmed and determined by the Langevin model and the law of approach to saturation (LAS), respectively. Hyperthermia under an alternating magnetic field (AMF) was conducted, indicating that all the NPs reach hyperthermia temperatures (42?°C) in relatively short times (3–5?min.). It was found that all the Mg-doped γ-Fe<sub>2</sub>O<sub>3</sub> NPs present relatively good heating efficiencies, with SAR values in the range of 35–114W/g and ILP values (0.58–1.67 nHm<sup>2</sup>/kg). Furthermore, the linear response theory (LRT) model was studied to further assess heating mechanisms and to determine the Néel relaxation time (<span>\\({\\tau }_{R}\\)</span>). Our finding strongly suggests that the as-prepared Mg<sub>x</sub>-doped γ-Fe<sub>2</sub>O<sub>3</sub> MNPs are promising for hyperthermia application.\n</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"36 6","pages":"1583 - 1593"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-023-06592-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We report the preparation, characterization, and magnetic hyperthermia of magnesium-doped maghemite (γ-Fe2O3) nanoparticles (NPs). XRD and Rietveld refinement reveal the formation of a single cubic phase of γ-Fe2O3, where the substitution of Fe+3 located in the tetrahedral site by Mg+2 did not alter the crystal structure. Magnetic measurements showed an increase of saturation for low concentration of magnesium (1% and 3%) and a decrease for 5% of magnesium. The superparamagnetism behavior and the effective anisotropy constant (\({K_{eff}}\)) were confirmed and determined by the Langevin model and the law of approach to saturation (LAS), respectively. Hyperthermia under an alternating magnetic field (AMF) was conducted, indicating that all the NPs reach hyperthermia temperatures (42?°C) in relatively short times (3–5?min.). It was found that all the Mg-doped γ-Fe2O3 NPs present relatively good heating efficiencies, with SAR values in the range of 35–114W/g and ILP values (0.58–1.67 nHm2/kg). Furthermore, the linear response theory (LRT) model was studied to further assess heating mechanisms and to determine the Néel relaxation time (\({\tau }_{R}\)). Our finding strongly suggests that the as-prepared Mgx-doped γ-Fe2O3 MNPs are promising for hyperthermia application.
我们报道了镁掺杂磁铁矿(γ-Fe2O3)纳米颗粒(NPs)的制备、表征和磁热疗。XRD和Rietveld细化表明,γ-Fe2O3形成了一个立方相,其中位于四面体位置的Fe+3被Mg+2取代并没有改变晶体结构。磁性测量表明,低浓度镁(1)的饱和度增加% and 3%) and a decrease for 5% of magnesium. The superparamagnetism behavior and the effective anisotropy constant (\({K_{eff}}\)) were confirmed and determined by the Langevin model and the law of approach to saturation (LAS), respectively. Hyperthermia under an alternating magnetic field (AMF) was conducted, indicating that all the NPs reach hyperthermia temperatures (42?°C) in relatively short times (3–5?min.). It was found that all the Mg-doped γ-Fe2O3 NPs present relatively good heating efficiencies, with SAR values in the range of 35–114W/g and ILP values (0.58–1.67 nHm2/kg). Furthermore, the linear response theory (LRT) model was studied to further assess heating mechanisms and to determine the Néel relaxation time (\({\tau }_{R}\)). Our finding strongly suggests that the as-prepared Mgx-doped γ-Fe2O3 MNPs are promising for hyperthermia application.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.