Paheli Bhattacharya, Shounak Paul, Kripabandhu Ghosh, Saptarshi Ghosh, Adam Wyner
{"title":"DeepRhole: deep learning for rhetorical role labeling of sentences in legal case documents","authors":"Paheli Bhattacharya, Shounak Paul, Kripabandhu Ghosh, Saptarshi Ghosh, Adam Wyner","doi":"10.1007/s10506-021-09304-5","DOIUrl":null,"url":null,"abstract":"<div><p>The task of rhetorical role labeling is to assign labels (such as Fact, Argument, Final Judgement, etc.) to sentences of a court case document. Rhetorical role labeling is an important problem in the field of Legal Analytics, since it can aid in various downstream tasks as well as enhances the readability of lengthy case documents. The task is challenging as case documents are highly various in structure and the rhetorical labels are often subjective. Previous works for automatic rhetorical role identification (i) mainly used Conditional Random Fields over manually handcrafted features, and (ii) focused on certain law domains only (e.g., Immigration cases, Rent law), and a particular jurisdiction/country (e.g., US, Canada, India). In this work, we improve upon the prior works on rhetorical role identification by proposing novel Deep Learning models for automatically identifying rhetorical roles, which substantially outperform the prior methods. Additionally, we show the effectiveness of the proposed models over documents from five different law domains, and from two different jurisdictions—the Supreme Court of India and the Supreme Court of the UK. Through extensive experiments over different variations of the Deep Learning models, including Transformer models based on BERT and LegalBERT, we show the robustness of the methods for the task. We also perform an extensive inter-annotator study and analyse the agreement of the predictions of the proposed model with the annotations by domain experts. We find that some rhetorical labels are inherently hard/subjective and both law experts and neural models frequently get confused in predicting them correctly.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"31 1","pages":"53 - 90"},"PeriodicalIF":3.1000,"publicationDate":"2021-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Law","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10506-021-09304-5","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 16
Abstract
The task of rhetorical role labeling is to assign labels (such as Fact, Argument, Final Judgement, etc.) to sentences of a court case document. Rhetorical role labeling is an important problem in the field of Legal Analytics, since it can aid in various downstream tasks as well as enhances the readability of lengthy case documents. The task is challenging as case documents are highly various in structure and the rhetorical labels are often subjective. Previous works for automatic rhetorical role identification (i) mainly used Conditional Random Fields over manually handcrafted features, and (ii) focused on certain law domains only (e.g., Immigration cases, Rent law), and a particular jurisdiction/country (e.g., US, Canada, India). In this work, we improve upon the prior works on rhetorical role identification by proposing novel Deep Learning models for automatically identifying rhetorical roles, which substantially outperform the prior methods. Additionally, we show the effectiveness of the proposed models over documents from five different law domains, and from two different jurisdictions—the Supreme Court of India and the Supreme Court of the UK. Through extensive experiments over different variations of the Deep Learning models, including Transformer models based on BERT and LegalBERT, we show the robustness of the methods for the task. We also perform an extensive inter-annotator study and analyse the agreement of the predictions of the proposed model with the annotations by domain experts. We find that some rhetorical labels are inherently hard/subjective and both law experts and neural models frequently get confused in predicting them correctly.
期刊介绍:
Artificial Intelligence and Law is an international forum for the dissemination of original interdisciplinary research in the following areas: Theoretical or empirical studies in artificial intelligence (AI), cognitive psychology, jurisprudence, linguistics, or philosophy which address the development of formal or computational models of legal knowledge, reasoning, and decision making. In-depth studies of innovative artificial intelligence systems that are being used in the legal domain. Studies which address the legal, ethical and social implications of the field of Artificial Intelligence and Law.
Topics of interest include, but are not limited to, the following: Computational models of legal reasoning and decision making; judgmental reasoning, adversarial reasoning, case-based reasoning, deontic reasoning, and normative reasoning. Formal representation of legal knowledge: deontic notions, normative
modalities, rights, factors, values, rules. Jurisprudential theories of legal reasoning. Specialized logics for law. Psychological and linguistic studies concerning legal reasoning. Legal expert systems; statutory systems, legal practice systems, predictive systems, and normative systems. AI and law support for legislative drafting, judicial decision-making, and
public administration. Intelligent processing of legal documents; conceptual retrieval of cases and statutes, automatic text understanding, intelligent document assembly systems, hypertext, and semantic markup of legal documents. Intelligent processing of legal information on the World Wide Web, legal ontologies, automated intelligent legal agents, electronic legal institutions, computational models of legal texts. Ramifications for AI and Law in e-Commerce, automatic contracting and negotiation, digital rights management, and automated dispute resolution. Ramifications for AI and Law in e-governance, e-government, e-Democracy, and knowledge-based systems supporting public services, public dialogue and mediation. Intelligent computer-assisted instructional systems in law or ethics. Evaluation and auditing techniques for legal AI systems. Systemic problems in the construction and delivery of legal AI systems. Impact of AI on the law and legal institutions. Ethical issues concerning legal AI systems. In addition to original research contributions, the Journal will include a Book Review section, a series of Technology Reports describing existing and emerging products, applications and technologies, and a Research Notes section of occasional essays posing interesting and timely research challenges for the field of Artificial Intelligence and Law. Financial support for the Journal of Artificial Intelligence and Law is provided by the University of Pittsburgh School of Law.