{"title":"Gravity at cosmological distances: Explaining the accelerating expansion without dark energy","authors":"J. Harada","doi":"10.1103/PhysRevD.108.044031","DOIUrl":null,"url":null,"abstract":"Three theoretical criteria for gravitational theories beyond general relativity are considered: obtaining the cosmological constant as an integration constant, deriving the energy conservation law as a consequence of the field equations, rather than assuming it, and not necessarily considering conformally flat metrics as vacuum solutions. Existing theories, including general relativity, do not simultaneously fulfill all three criteria. To address this, a new gravitational field equation is proposed that satisfies these criteria. From this equation, a spherically symmetric exact solution is derived, which is a generalization of the Schwarzschild solution. It incorporates three terms: the Schwarzschild term, the de Sitter term, and a newly discovered term, which is proportional to $r^4$ in a radial coordinate, that becomes significant only at large distances. The equation is further applied to cosmology, deriving an equation for the scale factor. It then presents a solution that describes the transition from decelerating to accelerating expansion in a matter-dominated universe. This is achieved without the need for negative pressure as dark energy or the positive cosmological constant. This provides a novel explanation for the current accelerating expansion of the universe.","PeriodicalId":48711,"journal":{"name":"Physical Review D","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevD.108.044031","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 7
Abstract
Three theoretical criteria for gravitational theories beyond general relativity are considered: obtaining the cosmological constant as an integration constant, deriving the energy conservation law as a consequence of the field equations, rather than assuming it, and not necessarily considering conformally flat metrics as vacuum solutions. Existing theories, including general relativity, do not simultaneously fulfill all three criteria. To address this, a new gravitational field equation is proposed that satisfies these criteria. From this equation, a spherically symmetric exact solution is derived, which is a generalization of the Schwarzschild solution. It incorporates three terms: the Schwarzschild term, the de Sitter term, and a newly discovered term, which is proportional to $r^4$ in a radial coordinate, that becomes significant only at large distances. The equation is further applied to cosmology, deriving an equation for the scale factor. It then presents a solution that describes the transition from decelerating to accelerating expansion in a matter-dominated universe. This is achieved without the need for negative pressure as dark energy or the positive cosmological constant. This provides a novel explanation for the current accelerating expansion of the universe.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.