Waste collection under uncertainty: a simheuristic based on variable neighbourhood search

IF 1.4 4区 工程技术 Q3 ENGINEERING, INDUSTRIAL European Journal of Industrial Engineering Pub Date : 2017-03-24 DOI:10.1504/EJIE.2017.10003619
Aljoscha Gruler, Carlos L. Quintero-Araújo, Laura Calvet, A. Juan
{"title":"Waste collection under uncertainty: a simheuristic based on variable neighbourhood search","authors":"Aljoscha Gruler, Carlos L. Quintero-Araújo, Laura Calvet, A. Juan","doi":"10.1504/EJIE.2017.10003619","DOIUrl":null,"url":null,"abstract":"Ongoing population growth in cities and increasing waste production has made the optimisation of urban waste management a critical task for local governments. Route planning in waste collection can be formulated as an extended version of the well-known vehicle routing problem, for which a wide range of solution methods already exist. Despite the fact that real-life applications are characterised by high uncertainty levels, most works on waste collection assume deterministic inputs. In order to partially close this literature gap, this paper first proposes a competitive metaheuristic algorithm based on a variable neighbourhood search framework for the deterministic waste collection problem. Then, this metaheuristic is extended to a simheuristic algorithm in order to deal with the stochastic problem version. This extension is achieved by integrating simulation into the metaheuristic framework, which also allows a closer risk analysis of the best-found stochastic solutions. Different computational experiments illustrate the potential of our methodology. [Received: 13 January 2016; Revised: 25 April 2016; Revised: 19 September 2016; Revised: 18 October 2016; Accepted: 25 October 2016]","PeriodicalId":51047,"journal":{"name":"European Journal of Industrial Engineering","volume":"11 1","pages":"228-255"},"PeriodicalIF":1.4000,"publicationDate":"2017-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/EJIE.2017.10003619","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 43

Abstract

Ongoing population growth in cities and increasing waste production has made the optimisation of urban waste management a critical task for local governments. Route planning in waste collection can be formulated as an extended version of the well-known vehicle routing problem, for which a wide range of solution methods already exist. Despite the fact that real-life applications are characterised by high uncertainty levels, most works on waste collection assume deterministic inputs. In order to partially close this literature gap, this paper first proposes a competitive metaheuristic algorithm based on a variable neighbourhood search framework for the deterministic waste collection problem. Then, this metaheuristic is extended to a simheuristic algorithm in order to deal with the stochastic problem version. This extension is achieved by integrating simulation into the metaheuristic framework, which also allows a closer risk analysis of the best-found stochastic solutions. Different computational experiments illustrate the potential of our methodology. [Received: 13 January 2016; Revised: 25 April 2016; Revised: 19 September 2016; Revised: 18 October 2016; Accepted: 25 October 2016]
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定性下的垃圾收集:一种基于可变邻域搜索的模拟启发式算法
城市人口的持续增长和废物产生的增加使优化城市废物管理成为地方政府的一项关键任务。废物收集中的路线规划可以作为众所周知的车辆路线问题的扩展版本来制定,针对该问题已经存在广泛的解决方法。尽管现实生活中的应用具有高不确定性水平的特点,但大多数废物收集工作都假设了确定性输入。为了部分弥补这一文献空白,本文首先针对确定性废物收集问题,提出了一种基于可变邻域搜索框架的竞争元启发式算法。然后,为了处理随机问题版本,将这种元启发式算法扩展为模拟启发式算法。这种扩展是通过将模拟集成到元启发式框架中来实现的,这也允许对找到的最佳随机解决方案进行更密切的风险分析。不同的计算实验说明了我们方法的潜力。【接收日期:2016年1月13日;修订日期:2016月25日;修订时间:2016年9月19日;修订:2016年10月18日;接受日期:2016年度10月25日】
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Industrial Engineering
European Journal of Industrial Engineering 工程技术-工程:工业
CiteScore
2.60
自引率
20.00%
发文量
55
审稿时长
6 months
期刊介绍: EJIE is an international journal aimed at disseminating the latest developments in all areas of industrial engineering, including information and service industries, ergonomics and safety, quality management as well as business and strategy, and at bridging the gap between theory and practice.
期刊最新文献
A collaborative model for predictive maintenance of after-sales equipment based on digital twin An integrated two dimensional cutting stock and lot sizing problem with two criteria Third-party remanufacturing modes with integrated tax-subsidy policy Blockchain capabilities for supply chain management An integrated Markov chain model for the economic-statistical design of adaptive multivariate control charts and maintenance planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1