{"title":"Electrical Properties of A Novel Solid Biopolymer Electrolyte based on Algi-nate Incorporated with Citric Acid","authors":"A. F. Fuzlin, N. Ismail, Y. Nagao, A. S. Samsudin","doi":"10.7454/MST.V23I1.3643","DOIUrl":null,"url":null,"abstract":"In the present study, a novel solid biopolymer electrolytes (SBE) system has been introduced by doping citric acid into alginate polymer. The sample of alginate-citric acid SBE system was prepared via solution casting technique. By using Electrical Impedance Spectroscopy (EIS), the electrolytes of alginate-citric acid has been analyzed from 5 Hz to 1 MHz achieved highest conductivity value at 20 wt.% of 5.49 x 10-7 S cm-1. The temperature dependence of various composition citric acid was found to obey the Arrhenius rules with R2~1 where all SBE system is thermally activated when increasing temperature. The dielectric studies of the alginate-citric acid SBE system showed a non-debye behavior based on data measured using complex permittivity (e*) and complex electrical modulus (M*) at selected temperature where there are no single relation was found in new biopolymer electrolytes system.","PeriodicalId":42980,"journal":{"name":"Makara Journal of Technology","volume":" ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Makara Journal of Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7454/MST.V23I1.3643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
In the present study, a novel solid biopolymer electrolytes (SBE) system has been introduced by doping citric acid into alginate polymer. The sample of alginate-citric acid SBE system was prepared via solution casting technique. By using Electrical Impedance Spectroscopy (EIS), the electrolytes of alginate-citric acid has been analyzed from 5 Hz to 1 MHz achieved highest conductivity value at 20 wt.% of 5.49 x 10-7 S cm-1. The temperature dependence of various composition citric acid was found to obey the Arrhenius rules with R2~1 where all SBE system is thermally activated when increasing temperature. The dielectric studies of the alginate-citric acid SBE system showed a non-debye behavior based on data measured using complex permittivity (e*) and complex electrical modulus (M*) at selected temperature where there are no single relation was found in new biopolymer electrolytes system.