A nondestructive approach to predict buckling load of composite lattice-core sandwich conical shells based on vibration correlation technique

IF 3.5 3区 材料科学 Q1 ENGINEERING, MECHANICAL Journal of Sandwich Structures & Materials Pub Date : 2022-08-28 DOI:10.1177/10996362221122020
Mehdi Zarei, G. Rahimi
{"title":"A nondestructive approach to predict buckling load of composite lattice-core sandwich conical shells based on vibration correlation technique","authors":"Mehdi Zarei, G. Rahimi","doi":"10.1177/10996362221122020","DOIUrl":null,"url":null,"abstract":"In this paper the vibration correlation technique (VCT) has been used as a nondestructive method for predicting the buckling load of the composite lattice-core sandwich conical shells. This technique is capable of predicting the buckling load of different structures without reaching the failure point through modal testing. The composite lattice-core sandwich conical shell has been fabricated using a filament winding process. To perform the expriment, the fundamental natural frequency of the specimen is measured under stepped axial compression loading. The procedure is followed up without actually reaching the instability point when the structure collapses and is no longer usable. A finite element model has also been built in ABAQUS in order to determine the correlation between natural frequency and applied compressive load. A comparison of the results indicated that the VCT has provided a reliable estimate of the buckling load of composite lattice-core sandwich conical shells, especially when the structure is loaded up to at least 66% of the experimental buckling load and accuracy of the VCT decreases when the maximum load is lower than 43% of the buckling load. Results also revealed that the linear fitted curve is unsuitable for the correlation between frequency of vibration and applied load in order to predict buckling load.","PeriodicalId":17215,"journal":{"name":"Journal of Sandwich Structures & Materials","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures & Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/10996362221122020","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper the vibration correlation technique (VCT) has been used as a nondestructive method for predicting the buckling load of the composite lattice-core sandwich conical shells. This technique is capable of predicting the buckling load of different structures without reaching the failure point through modal testing. The composite lattice-core sandwich conical shell has been fabricated using a filament winding process. To perform the expriment, the fundamental natural frequency of the specimen is measured under stepped axial compression loading. The procedure is followed up without actually reaching the instability point when the structure collapses and is no longer usable. A finite element model has also been built in ABAQUS in order to determine the correlation between natural frequency and applied compressive load. A comparison of the results indicated that the VCT has provided a reliable estimate of the buckling load of composite lattice-core sandwich conical shells, especially when the structure is loaded up to at least 66% of the experimental buckling load and accuracy of the VCT decreases when the maximum load is lower than 43% of the buckling load. Results also revealed that the linear fitted curve is unsuitable for the correlation between frequency of vibration and applied load in order to predict buckling load.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于振动相关技术的复合材料格芯夹层锥形壳屈曲载荷无损预测方法
本文将振动相关技术(VCT)作为一种无损方法,用于预测复合材料格构-芯-夹层锥壳的屈曲载荷。该技术能够预测不同结构的屈曲载荷,而不会通过模态试验达到失效点。采用纤维缠绕工艺制备了复合材料格芯夹层锥壳。为了进行实验,在阶跃轴向压缩载荷下测量了试样的基本固有频率。当结构倒塌且不再可用时,在没有实际达到失稳点的情况下,对程序进行了跟进。为了确定固有频率和施加的压缩载荷之间的相关性,还在ABAQUS中建立了有限元模型。对结果的比较表明,VCT对复合材料格构夹芯锥壳的屈曲载荷提供了可靠的估计,尤其是当结构的载荷至少达到实验屈曲载荷的66%时,而当最大载荷低于屈曲载荷的43%时,VCT的精度会降低。结果还表明,线性拟合曲线不适合用于预测屈曲载荷的振动频率和施加载荷之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sandwich Structures & Materials
Journal of Sandwich Structures & Materials 工程技术-材料科学:表征与测试
CiteScore
9.60
自引率
2.60%
发文量
49
审稿时长
7 months
期刊介绍: The Journal of Sandwich Structures and Materials is an international peer reviewed journal that provides a means of communication to fellow engineers and scientists by providing an archival record of developments in the science, technology, and professional practices of sandwich construction throughout the world. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Fundamental mechanical relations of open-cell metal foam composite materials with reticular porous structure Bond strength empirical-mathematical equation and optimization of Al1050/AISI304 bilayer sheets fabricated by cold roll bonding method Flexural and impact response of sandwich panels with Nomex honeycomb core and hybrid fiber composite skins Global buckling response of sandwich panels with additively manufactured lattice cores Numerical study on structured sandwich panels exposed to spherical air explosions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1