{"title":"Laboratory evaluation of caricaceae plant as a locally sourced surfactant for gas hydrate inhibition in a laboratory mini flow loop","authors":"Virtue Urunwo Elechi, Sunday Sunday Ikiensikimama, Joseph Atubokiki Ajienka, Onyewuchi Emmanuel Akaranta, Okon Efiong Okon","doi":"10.1007/s13203-021-00275-x","DOIUrl":null,"url":null,"abstract":"<div><p>The oil and gas business is serious business and involves millions of dollars so whatever mitigates flow assurance is taken seriously. One of such things is natural gas hydrates. Hydrates are crystalline solids formed when water under low temperatures and high pressures encapsulated natural gases (C<sub>1</sub>–C<sub>4</sub>). They form blockages and impede the flow of gas which can lead to the loss of millions of dollars and at times lead to personnel death. Mitigation of gas hydrates has always been with chemicals especially for areas like deep offshore where accessibility is difficult. The chemicals that are in use currently are generally synthetic, expensive and hazardous to lives and environment hence the need for readily available locally sourced materials that are eco-friendly. This study considers and screens a locally sourced surfactant from the plant family caricaceae’ Extract (CE) as a gas hydrate inhibitor in a locally fabricated 39.4-inch mini flow loop of ½ inch internal diameter (ID) which mimics the offshore environment. Various pressure plots (pressure versus time, initial and final pressure versus time and change in pressure versus time) show that the CE performed better than MEG with percentage volumes of gas left in the system for 0.01–0.05 wt% of the extract having values that ranged from 76.7 to 87.33, while volume left for MEG ranged between 70 and 74.67% (1–5 wt%). The CE performed better in small doses compared to those of MEG, in all weight percentages of study. Furthermore, the inhibition capacities which show the level of performance of the inhibitors was also used as a measure of inhibition for both inhibitors. The CE inhibited systems had values of 69.3, 80.7, 78.07, 79.82, and 83.3%, while that of the MEG inhibited system was 60.53, 55.26, 73.68, 72.81, and 66.67% for the various weight percentages considered. The CE should be developed as gas hydrate inhibitors due to its effectiveness and eco-friendliness.</p></div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 3","pages":"295 - 303"},"PeriodicalIF":0.1250,"publicationDate":"2021-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00275-x","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-021-00275-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The oil and gas business is serious business and involves millions of dollars so whatever mitigates flow assurance is taken seriously. One of such things is natural gas hydrates. Hydrates are crystalline solids formed when water under low temperatures and high pressures encapsulated natural gases (C1–C4). They form blockages and impede the flow of gas which can lead to the loss of millions of dollars and at times lead to personnel death. Mitigation of gas hydrates has always been with chemicals especially for areas like deep offshore where accessibility is difficult. The chemicals that are in use currently are generally synthetic, expensive and hazardous to lives and environment hence the need for readily available locally sourced materials that are eco-friendly. This study considers and screens a locally sourced surfactant from the plant family caricaceae’ Extract (CE) as a gas hydrate inhibitor in a locally fabricated 39.4-inch mini flow loop of ½ inch internal diameter (ID) which mimics the offshore environment. Various pressure plots (pressure versus time, initial and final pressure versus time and change in pressure versus time) show that the CE performed better than MEG with percentage volumes of gas left in the system for 0.01–0.05 wt% of the extract having values that ranged from 76.7 to 87.33, while volume left for MEG ranged between 70 and 74.67% (1–5 wt%). The CE performed better in small doses compared to those of MEG, in all weight percentages of study. Furthermore, the inhibition capacities which show the level of performance of the inhibitors was also used as a measure of inhibition for both inhibitors. The CE inhibited systems had values of 69.3, 80.7, 78.07, 79.82, and 83.3%, while that of the MEG inhibited system was 60.53, 55.26, 73.68, 72.81, and 66.67% for the various weight percentages considered. The CE should be developed as gas hydrate inhibitors due to its effectiveness and eco-friendliness.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.