From implementation to application: FAIR digital objects for training data composition

Nicolas Blumenröhr, R. Aversa
{"title":"From implementation to application: FAIR digital objects for training data composition","authors":"Nicolas Blumenröhr, R. Aversa","doi":"10.3897/rio.9.e108706","DOIUrl":null,"url":null,"abstract":"Composing training data for Machine Learning applications can be laborious and time-consuming when done manually. The use of FAIR Digital Objects, in which the data is machine-interpretable and -actionable, makes it possible to automate and simplify this task. As an application case, we represented labeled Scanning Electron Microscopy images from different sources as FAIR Digital Objects to compose a training data set. In addition to some existing services included in our implementation (the Typed-PID Maker, the Handle Registry, and the ePIC Data Type Registry), we developed a Python client to automate the relabeling task. Our work provides a Proof-of-Concept validation for the usefulness of FAIR Digital Objects on a specific task, facilitating further developments and future extensions to other machine learning applications.","PeriodicalId":92718,"journal":{"name":"Research ideas and outcomes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research ideas and outcomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/rio.9.e108706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Composing training data for Machine Learning applications can be laborious and time-consuming when done manually. The use of FAIR Digital Objects, in which the data is machine-interpretable and -actionable, makes it possible to automate and simplify this task. As an application case, we represented labeled Scanning Electron Microscopy images from different sources as FAIR Digital Objects to compose a training data set. In addition to some existing services included in our implementation (the Typed-PID Maker, the Handle Registry, and the ePIC Data Type Registry), we developed a Python client to automate the relabeling task. Our work provides a Proof-of-Concept validation for the usefulness of FAIR Digital Objects on a specific task, facilitating further developments and future extensions to other machine learning applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从实现到应用:FAIR数字对象的训练数据组成
手动为机器学习应用程序编写训练数据可能既费力又耗时。FAIR数字对象的使用,其中的数据是机器可解释和可操作的,使得自动化和简化这项任务成为可能。作为一个应用案例,我们将来自不同来源的标记扫描电子显微镜图像表示为FAIR数字对象,以组成训练数据集。除了我们的实现中包含的一些现有服务(Typed PID Maker、Handle Registry和ePIC Data Type Registry)外,我们还开发了一个Python客户端来自动化重新标记任务。我们的工作为FAIR数字对象在特定任务中的有用性提供了概念验证,促进了其他机器学习应用程序的进一步开发和未来扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
2 weeks
期刊最新文献
ECOSENSE - Multi-scale quantification and modelling of spatio-temporal dynamics of ecosystem processes by smart autonomous sensor networks Earth deity shrines of the Greater Taipei area: A first edition curated dataset Restoring the Lower Danube River's wetlands: a short report on the hydrological effectiveness of completed projects Interim Report NFDI4Chem 2023 The Meise Botanic Garden Herbarium Data Management Plan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1