Lipid accumulation from glucose and xylose in an engineered, naturally oleaginous strain of Saccharomyces cerevisiae

IF 14.4 Q1 ENERGY & FUELS Biofuel Research Journal-BRJ Pub Date : 2018-06-01 DOI:10.18331/BRJ2018.5.2.3
E. Knoshaug, S. V. Wychen, Arjun Singh, Min Zhang
{"title":"Lipid accumulation from glucose and xylose in an engineered, naturally oleaginous strain of Saccharomyces cerevisiae","authors":"E. Knoshaug, S. V. Wychen, Arjun Singh, Min Zhang","doi":"10.18331/BRJ2018.5.2.3","DOIUrl":null,"url":null,"abstract":"Saccharomyces cerevisiae, a well-known industrial yeast for alcoholic fermentation, is not historically known to accumulate lipids. Four S. cerevisiae strains used in industrial applications were screened for their ability to accumulate neutral lipids. Only one, D5A, was found to accumulate up to 20% dry cell weight (dcw) lipids. This strain was further engineered by knocking out ADP-activated serine/threonine kinase (SNF1) which increased lipid accumulation to 35% dcw lipids. In addition, we engineered D5A to utilize xylose and found that D5A accumulates up to 37% dcw lipids from xylose as the sole carbon source. Further we over-expressed different diacylglycerol acyltransferase (DGA1) genes and boosted lipid accumulation to 50%. Fatty acid speciation showed that 94% of the extracted lipids consisted of 5 fatty acid species, C16:0 (palmitic), C16:1n7 (palmitoleic), C18:0 (stearic), C18:1n7 (vaccenic), and C18:1n9 (oleic), while the relative distributions changed depending on growth conditions. In addition, this strain accumulated lipids concurrently with ethanol production.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/BRJ2018.5.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 13

Abstract

Saccharomyces cerevisiae, a well-known industrial yeast for alcoholic fermentation, is not historically known to accumulate lipids. Four S. cerevisiae strains used in industrial applications were screened for their ability to accumulate neutral lipids. Only one, D5A, was found to accumulate up to 20% dry cell weight (dcw) lipids. This strain was further engineered by knocking out ADP-activated serine/threonine kinase (SNF1) which increased lipid accumulation to 35% dcw lipids. In addition, we engineered D5A to utilize xylose and found that D5A accumulates up to 37% dcw lipids from xylose as the sole carbon source. Further we over-expressed different diacylglycerol acyltransferase (DGA1) genes and boosted lipid accumulation to 50%. Fatty acid speciation showed that 94% of the extracted lipids consisted of 5 fatty acid species, C16:0 (palmitic), C16:1n7 (palmitoleic), C18:0 (stearic), C18:1n7 (vaccenic), and C18:1n9 (oleic), while the relative distributions changed depending on growth conditions. In addition, this strain accumulated lipids concurrently with ethanol production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从葡萄糖和木糖中脂质积累的工程,天然产油酿酒酵母菌株
酿酒酵母是一种众所周知的用于酒精发酵的工业酵母,历史上并不知道它会积累脂质。筛选了工业应用中使用的四种酿酒酵母菌株,以检测其积累中性脂的能力。只有一种,D5A,被发现积累高达20%的干细胞重量(dcw)脂质。该菌株通过敲除adp激活的丝氨酸/苏氨酸激酶(SNF1)进一步工程化,使脂质积累增加到35%。此外,我们设计D5A利用木糖,发现D5A从木糖作为唯一的碳源积累高达37%的dcw脂质。此外,我们过表达不同的二酰基甘油酰基转移酶(DGA1)基因,并将脂质积累提高到50%。脂肪酸形态分析表明,94%的提取脂质由C16:0(棕榈酸)、C16:1n7(棕榈油酸)、C18:0(硬脂酸)、C18:1n7(异丙酸)和C18:1n9(油酸)5种脂肪酸组成,其相对分布随生长条件的不同而变化。此外,该菌株在生产乙醇的同时也积累了脂质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.10
自引率
1.50%
发文量
15
审稿时长
8 weeks
期刊介绍: Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.
期刊最新文献
Editorial Board Design and construction of artificial microbial consortia to enhance lignocellulosic biomass degradation A critical review of multiple alternative pathways for the production of a high-value bioproduct from sugarcane mill byproducts: the case of adipic acid Towards nationwide implementation of 40% biodiesel blend fuel in Indonesia: a comprehensive road test and laboratory evaluation Nanomaterials and their role in advancing biodiesel feedstock production: A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1