{"title":"The material design and property research of a novel machine tool material","authors":"B. Lin, Zehua Hu","doi":"10.1504/ijnm.2019.10023468","DOIUrl":null,"url":null,"abstract":"In this paper, a new machine tool material is put forward where PTFE resin is chosen as the matrix material for its properties of good acid and alkali corrosion resistance. High purity quartz and alumina ceramic microsphere are selected as the aggregates; nano-alumina and hollow glass microsphere are selected as the fillers. First, the aggregate gradation is analysed. Then, Young's modulus and sound attenuation coefficient are predicted in theory. Nonlinear regression analysis is conducted by support vector machine (SVM). 2D and 3D irregular polygons aggregate particles packing model is set up by MATLAB and the properties of the packing model are simulated by finite element analysis. Finally, several vibration experiments are conducted. The analysis results show that the chosen filler and aggregate can improve the stiffness and vibration characteristics of the material, which has a guiding significance to the machinery manufacturing industry.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijnm.2019.10023468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a new machine tool material is put forward where PTFE resin is chosen as the matrix material for its properties of good acid and alkali corrosion resistance. High purity quartz and alumina ceramic microsphere are selected as the aggregates; nano-alumina and hollow glass microsphere are selected as the fillers. First, the aggregate gradation is analysed. Then, Young's modulus and sound attenuation coefficient are predicted in theory. Nonlinear regression analysis is conducted by support vector machine (SVM). 2D and 3D irregular polygons aggregate particles packing model is set up by MATLAB and the properties of the packing model are simulated by finite element analysis. Finally, several vibration experiments are conducted. The analysis results show that the chosen filler and aggregate can improve the stiffness and vibration characteristics of the material, which has a guiding significance to the machinery manufacturing industry.