{"title":"Testing independence between exogenous variables and unobserved errors","authors":"Shuo Li, Liuhua Peng, Y. Tu","doi":"10.1080/07474938.2022.2039493","DOIUrl":null,"url":null,"abstract":"Abstract Although the exogeneity condition is usually used in many econometric models to identify parameters, the stronger restriction that the error term is independent of a vector of exogenous variables might lead to theoretical benefits. In this paper, we develop a unified methodology for testing the independence assumption. Our methodology can deal with a wide class of parametric models and allows for endogeneity and instrumental variables. In the first-step development, we construct tests that are continuous functionals of the estimated difference of the joint distribution and the product marginal distributions. Next, to remedy the dimensionality issue that arises when the dimension of the exogenous random vector is large, we propose a multiple testing approach which combines marginal p-values obtained by employing the original tests to test independence between the error term and each exogenous variable, while taking full account of the multiplicity nature of the testing problem. We obtain null limiting distributions of our tests, establish the testing consistency, and justify the sensitivity to -local alternatives, with n the sample size. The multiplier bootstrap is employed to estimate the critical values. Our methodology is illustrated in the linear regression, the instrumental variables regression, and the nonlinear quantile regression. Our tests are found to perform well in simulations and are demonstrated via an empirical example.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"697 - 728"},"PeriodicalIF":0.8000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2022.2039493","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Although the exogeneity condition is usually used in many econometric models to identify parameters, the stronger restriction that the error term is independent of a vector of exogenous variables might lead to theoretical benefits. In this paper, we develop a unified methodology for testing the independence assumption. Our methodology can deal with a wide class of parametric models and allows for endogeneity and instrumental variables. In the first-step development, we construct tests that are continuous functionals of the estimated difference of the joint distribution and the product marginal distributions. Next, to remedy the dimensionality issue that arises when the dimension of the exogenous random vector is large, we propose a multiple testing approach which combines marginal p-values obtained by employing the original tests to test independence between the error term and each exogenous variable, while taking full account of the multiplicity nature of the testing problem. We obtain null limiting distributions of our tests, establish the testing consistency, and justify the sensitivity to -local alternatives, with n the sample size. The multiplier bootstrap is employed to estimate the critical values. Our methodology is illustrated in the linear regression, the instrumental variables regression, and the nonlinear quantile regression. Our tests are found to perform well in simulations and are demonstrated via an empirical example.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.