Testing independence between exogenous variables and unobserved errors

IF 0.8 4区 经济学 Q3 ECONOMICS Econometric Reviews Pub Date : 2022-04-18 DOI:10.1080/07474938.2022.2039493
Shuo Li, Liuhua Peng, Y. Tu
{"title":"Testing independence between exogenous variables and unobserved errors","authors":"Shuo Li, Liuhua Peng, Y. Tu","doi":"10.1080/07474938.2022.2039493","DOIUrl":null,"url":null,"abstract":"Abstract Although the exogeneity condition is usually used in many econometric models to identify parameters, the stronger restriction that the error term is independent of a vector of exogenous variables might lead to theoretical benefits. In this paper, we develop a unified methodology for testing the independence assumption. Our methodology can deal with a wide class of parametric models and allows for endogeneity and instrumental variables. In the first-step development, we construct tests that are continuous functionals of the estimated difference of the joint distribution and the product marginal distributions. Next, to remedy the dimensionality issue that arises when the dimension of the exogenous random vector is large, we propose a multiple testing approach which combines marginal p-values obtained by employing the original tests to test independence between the error term and each exogenous variable, while taking full account of the multiplicity nature of the testing problem. We obtain null limiting distributions of our tests, establish the testing consistency, and justify the sensitivity to -local alternatives, with n the sample size. The multiplier bootstrap is employed to estimate the critical values. Our methodology is illustrated in the linear regression, the instrumental variables regression, and the nonlinear quantile regression. Our tests are found to perform well in simulations and are demonstrated via an empirical example.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"697 - 728"},"PeriodicalIF":0.8000,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2022.2039493","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Although the exogeneity condition is usually used in many econometric models to identify parameters, the stronger restriction that the error term is independent of a vector of exogenous variables might lead to theoretical benefits. In this paper, we develop a unified methodology for testing the independence assumption. Our methodology can deal with a wide class of parametric models and allows for endogeneity and instrumental variables. In the first-step development, we construct tests that are continuous functionals of the estimated difference of the joint distribution and the product marginal distributions. Next, to remedy the dimensionality issue that arises when the dimension of the exogenous random vector is large, we propose a multiple testing approach which combines marginal p-values obtained by employing the original tests to test independence between the error term and each exogenous variable, while taking full account of the multiplicity nature of the testing problem. We obtain null limiting distributions of our tests, establish the testing consistency, and justify the sensitivity to -local alternatives, with n the sample size. The multiplier bootstrap is employed to estimate the critical values. Our methodology is illustrated in the linear regression, the instrumental variables regression, and the nonlinear quantile regression. Our tests are found to perform well in simulations and are demonstrated via an empirical example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检验外生变量和未观察到的误差之间的独立性
虽然在许多计量经济模型中通常使用外生性条件来识别参数,但更强的误差项独立于外生变量向量的限制可能会带来理论上的好处。在本文中,我们开发了一个统一的方法来检验独立性假设。我们的方法可以处理广泛的参数模型,并允许内生性和工具变量。在第一步开发中,我们构造了联合分布和乘积边际分布估计差的连续函数检验。接下来,为了解决外生随机向量的维数较大时出现的维数问题,我们提出了一种多重检验方法,该方法结合使用原始检验获得的边际p值来检验误差项与每个外生变量之间的独立性,同时充分考虑到检验问题的多重性。我们获得了检验的零极限分布,建立了检验一致性,并证明了对n个样本量的-局部替代方案的敏感性。采用乘法器自举法估计临界值。我们的方法用线性回归、工具变量回归和非线性分位数回归来说明。我们的测试在模拟中表现良好,并通过实例进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
期刊最新文献
Estimation of random functions proxying for unobservables Bootstrap inference on a factor model based average treatment effects estimator Using machine learning for efficient flexible regression adjustment in economic experiments Lag order selection for long-run variance estimation in econometrics Selecting the number of factors in approximate factor models using group variable regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1