{"title":"Function minimization and nonlinear least squares in R","authors":"J. Nash","doi":"10.1002/wics.1580","DOIUrl":null,"url":null,"abstract":"This review will look at function minimization and nonlinear least squares, possibly bounds constrained, using R. These tools derive from the more general context of numerical optimization and mathematical programming. How R developers have tried to make the application of such tools easier for users not familiar with optimization is highlighted. Some limitations of methods and their implementations are mentioned to provide perspective.","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1580","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This review will look at function minimization and nonlinear least squares, possibly bounds constrained, using R. These tools derive from the more general context of numerical optimization and mathematical programming. How R developers have tried to make the application of such tools easier for users not familiar with optimization is highlighted. Some limitations of methods and their implementations are mentioned to provide perspective.