{"title":"Thermodynamics Analysis of an MHD Casson Fluid Flow Through a Rotating Permeable Channel with Slip and Hall Effects","authors":"A. S. Eegunjobi, O. Makinde","doi":"10.24423/ENGTRANS.960.20200720","DOIUrl":null,"url":null,"abstract":"In this paper, the inherent irreversibility in a Casson fluid flow through a rotating permeable microchannel with wall slip and Hall current is investigated. It is assumed that the lower wall is subjected to the velocity slip and fluid injection while the fluid suction occurs at the upper wall. The nonlinear governing equations of momentum and energy balance are obtained, analyzed and solved numerically using the shooting technique together with the Runge-Kutta-Fehlberg integration method. Pertinent results depicting the effects of various embedded thermophysical parameters on the fluid velocity, temperature, skin friction, the Nusselt number, entropy generation rate and the Bejan number are presented graphically and discussed. It is found that the entropy generation rate is enhanced by fluid rotation and velocity slip but lessened with a rise magnetic field intensity. Our results will undoubtedly augment the design and efficient operation of micro-cooling devices, micro-heat exchangers, micropumps and micro-mixing technologies.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":"68 1","pages":"239-252"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.960.20200720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the inherent irreversibility in a Casson fluid flow through a rotating permeable microchannel with wall slip and Hall current is investigated. It is assumed that the lower wall is subjected to the velocity slip and fluid injection while the fluid suction occurs at the upper wall. The nonlinear governing equations of momentum and energy balance are obtained, analyzed and solved numerically using the shooting technique together with the Runge-Kutta-Fehlberg integration method. Pertinent results depicting the effects of various embedded thermophysical parameters on the fluid velocity, temperature, skin friction, the Nusselt number, entropy generation rate and the Bejan number are presented graphically and discussed. It is found that the entropy generation rate is enhanced by fluid rotation and velocity slip but lessened with a rise magnetic field intensity. Our results will undoubtedly augment the design and efficient operation of micro-cooling devices, micro-heat exchangers, micropumps and micro-mixing technologies.
期刊介绍:
Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.