Shear transfer in fly ash-concrete with electric arc furnace aggregates

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Magazine of Concrete Research Pub Date : 2023-03-13 DOI:10.1680/jmacr.22.00280
F. Faleschini, Daniel Trento, V. Lopez, M. Zanini
{"title":"Shear transfer in fly ash-concrete with electric arc furnace aggregates","authors":"F. Faleschini, Daniel Trento, V. Lopez, M. Zanini","doi":"10.1680/jmacr.22.00280","DOIUrl":null,"url":null,"abstract":"This work experimentally evaluates the friction shear behavior of Electric Arc Furnace (EAF) concrete, compared to its reference counterpart made with natural aggregates only. For this scope, two concrete mixes were casted, both containing a blended cement with 30% of fly ash to improve their sustainability. For each mix, other than analyzing the main mechanical properties (compressive, tensile strength and elastic modulus), push-off specimens were tested to obtain the shear strength, failure modes, stress-slip and stress-crack opening curves. The results obtained here clearly identify an enhancement of the shear strength τ of EAF concrete compared to the reference, even though the relation between τ and concrete tensile strength fct is similar between the two concretes. Results are also compared with ones in literature, dealing with ordinary and recycled aggregate concrete (RAC). Further, existing models from both designing codes and literature were applied to the experimental results, obtaining conservative predictions in all cases. The safety margin for the EAF concrete was found to be higher than for the reference concrete.","PeriodicalId":18113,"journal":{"name":"Magazine of Concrete Research","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magazine of Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmacr.22.00280","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

This work experimentally evaluates the friction shear behavior of Electric Arc Furnace (EAF) concrete, compared to its reference counterpart made with natural aggregates only. For this scope, two concrete mixes were casted, both containing a blended cement with 30% of fly ash to improve their sustainability. For each mix, other than analyzing the main mechanical properties (compressive, tensile strength and elastic modulus), push-off specimens were tested to obtain the shear strength, failure modes, stress-slip and stress-crack opening curves. The results obtained here clearly identify an enhancement of the shear strength τ of EAF concrete compared to the reference, even though the relation between τ and concrete tensile strength fct is similar between the two concretes. Results are also compared with ones in literature, dealing with ordinary and recycled aggregate concrete (RAC). Further, existing models from both designing codes and literature were applied to the experimental results, obtaining conservative predictions in all cases. The safety margin for the EAF concrete was found to be higher than for the reference concrete.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电弧炉集料粉煤灰混凝土的剪切传递特性
这项工作实验评估了电弧炉(EAF)混凝土的摩擦剪切行为,与仅用天然骨料制成的参考对照。为此,我们浇铸了两种混凝土混合物,均含有掺30%粉煤灰的水泥,以提高其可持续性。对于每种配合比,除分析其主要力学性能(抗压、抗拉强度和弹性模量)外,还进行推脱试件试验,获得其抗剪强度、破坏模式、应力-滑移和应力-裂纹张开曲线。这里获得的结果清楚地表明,与参考相比,EAF混凝土的抗剪强度τ有所提高,尽管两种混凝土之间的τ与混凝土抗拉强度系数之间的关系相似。结果还与文献中有关普通骨料和再生骨料混凝土(RAC)的研究结果进行了比较。此外,将设计规范和文献中的现有模型应用于实验结果,在所有情况下均获得保守预测。研究发现,电弧炉混凝土的安全裕度高于参考混凝土。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Magazine of Concrete Research
Magazine of Concrete Research 工程技术-材料科学:综合
CiteScore
4.60
自引率
11.10%
发文量
102
审稿时长
5 months
期刊介绍: For concrete and other cementitious derivatives to be developed further, we need to understand the use of alternative hydraulically active materials used in combination with plain Portland Cement, sustainability and durability issues. Both fundamental and best practice issues need to be addressed. Magazine of Concrete Research covers every aspect of concrete manufacture and behaviour from performance and evaluation of constituent materials to mix design, testing, durability, structural analysis and composite construction.
期刊最新文献
Characterisation proposal of direct shear strength of steel fibre-reinforced concrete Punching shear tests and design of UHTCC-enhanced RC slab-column joints with shear reinforcements Engineering and microstructural properties of self-compacting concrete containing coarse recycled concrete aggregate Modelling chloride diffusion in concrete with carbonated surface layer Shear friction capacity of monolithic construction joints reinforced with self-prestressing reinforcing steel bars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1