The Effect of Text Summarization in Essay Scoring (Case Study: Teach on E-Learning)

Sensa G. S. Syahra, Yunita Sari, Y. Suyanto
{"title":"The Effect of Text Summarization in Essay Scoring (Case Study: Teach on E-Learning)","authors":"Sensa G. S. Syahra, Yunita Sari, Y. Suyanto","doi":"10.22146/ijccs.69906","DOIUrl":null,"url":null,"abstract":"The development of automated essay scoring (AES) in the neural network (NN) approach has eliminated feature engineering. However, feature engineering is still needed, moreover, data with labels in the form of rubric scores, which are complementary to AES holistic scores, are still rarely found. In general, data without labels/scores is found more. However, unsupervised AES research has not progressed with the more common use of publicly labeled data. Based on the case studies adopted in the research, automatic text summarization (ATS) was used as a feature engineering model of AES and readability index as the definition of rubric values for data without labels.This research focuses on developing AES by implementing ATS results on SOM and HDBSCAN. The data used in this research are 403 documents of TEACH ON E-learning essays. Data is represented in the form of a combination of word vectors and a readability index. Based on the tests and measurements carried out, it was concluded that AES with ATS implementation had no good potential for the assessment of TEACH ON essays in increasing the silhouette score. The model produces the best silhouette score of 0.727286113 with original essay data.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijccs.69906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of automated essay scoring (AES) in the neural network (NN) approach has eliminated feature engineering. However, feature engineering is still needed, moreover, data with labels in the form of rubric scores, which are complementary to AES holistic scores, are still rarely found. In general, data without labels/scores is found more. However, unsupervised AES research has not progressed with the more common use of publicly labeled data. Based on the case studies adopted in the research, automatic text summarization (ATS) was used as a feature engineering model of AES and readability index as the definition of rubric values for data without labels.This research focuses on developing AES by implementing ATS results on SOM and HDBSCAN. The data used in this research are 403 documents of TEACH ON E-learning essays. Data is represented in the form of a combination of word vectors and a readability index. Based on the tests and measurements carried out, it was concluded that AES with ATS implementation had no good potential for the assessment of TEACH ON essays in increasing the silhouette score. The model produces the best silhouette score of 0.727286113 with original essay data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文本概括在作文评分中的作用(案例研究:网上教学)
在神经网络(NN)方法中,自动论文评分(AES)的发展已经消除了特征工程。然而,特征工程仍然是必要的,此外,与AES整体评分互补的具有量规评分形式标签的数据仍然很少找到。一般来说,没有标签/分数的数据更多。然而,无监督AES研究并没有随着公开标记数据的更普遍使用而取得进展。基于研究中采用的案例研究,使用自动文本摘要(ATS)作为AES的特征工程模型,使用可读性指数作为无标签数据的量规值的定义。本研究的重点是通过在SOM和HDBSCAN上实现ATS结果来开发AES。本研究所使用的资料为403篇电子学习教师论文。数据以单词矢量和可读性索引的组合形式表示。根据所进行的测试和测量,得出的结论是,在提高轮廓分数方面,采用ATS的AES在评估TEACH on论文方面没有很好的潜力。该模型在原始论文数据的基础上得出了0.727286113的最佳轮廓分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
期刊最新文献
Identify Reviews of Pedulilindungi Applications using Topic Modeling with Latent Dirichlet Allocation Method Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction Optimizing ODP Device Placement on FTTH Network Using Genetic Algorithms Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms ESSAY ANSWER CLASSIFICATION WITH SMOTE RANDOM FOREST AND ADABOOST IN AUTOMATED ESSAY SCORING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1