Flowering responses of serradella (Ornithopus spp.) and subterranean clover (Trifolium subterraneum L.) to vernalisation and photoperiod and their role in maturity type determination and flowering date stability
Laura Goward, R. Haling, Rowan W. Smith, B. Penrose, R. Simpson
{"title":"Flowering responses of serradella (Ornithopus spp.) and subterranean clover (Trifolium subterraneum L.) to vernalisation and photoperiod and their role in maturity type determination and flowering date stability","authors":"Laura Goward, R. Haling, Rowan W. Smith, B. Penrose, R. Simpson","doi":"10.1071/CP22366","DOIUrl":null,"url":null,"abstract":"ABSTRACT Context. Serradellas (Ornithopus spp.) are promising alternative annual legumes to subterranean clover (Trifolium subterraneum L.), for permanent, temperate pastures. However, many cultivars exhibit unstable flowering dates across years. This is a risk for seed production and persistence. Aim. This study assessed how vernalisation and photoperiod cues determine maturity type and flowering date stability among serradella cultivars. Methods. First flower appearance was recorded for early and late maturing cultivars of yellow serradella (Ornithopus compressus L.), French serradella (Ornithopus sativus Brot.) and subterranean clover after exposure to six vernalisation treatments (0, 1, 3, 5, 7 or 9 weeks at 5°C) with subsequent growth under four photoperiods (8, 12, 16 or 20 h). Key results. ‘Intrinsic earliness’ differed by only zero to three nodes for cultivars within species, indicating that maturity type was determined primarily by a cultivar’s responses to vernalisation and photoperiod. An interaction between these responses was observed, with a precipitous decline in the requirement for vernalisation when photoperiods exceeded 12 h. Many cultivars also displayed a persistent component to their vernalisation response, whereby long photoperiods (20 h) did not completely negate the response to vernalisation. Conclusions. Later maturity was associated particularly with need for long exposure to the vernalisation treatment to minimise the duration from sowing to first flower appearance. Stable flowering is more likely when a cultivar has components of its vernalisation requirement that are not satisfied before autumn ends to prevent premature flowering, and a photoperiod response in spring that overrides any unmet vernalisation requirement. Implications. Persistence by serradella cultivars requires selection for suitable responsiveness to vernalisation and photoperiod.","PeriodicalId":51237,"journal":{"name":"Crop & Pasture Science","volume":"74 1","pages":"769 - 782"},"PeriodicalIF":1.8000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop & Pasture Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/CP22366","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT Context. Serradellas (Ornithopus spp.) are promising alternative annual legumes to subterranean clover (Trifolium subterraneum L.), for permanent, temperate pastures. However, many cultivars exhibit unstable flowering dates across years. This is a risk for seed production and persistence. Aim. This study assessed how vernalisation and photoperiod cues determine maturity type and flowering date stability among serradella cultivars. Methods. First flower appearance was recorded for early and late maturing cultivars of yellow serradella (Ornithopus compressus L.), French serradella (Ornithopus sativus Brot.) and subterranean clover after exposure to six vernalisation treatments (0, 1, 3, 5, 7 or 9 weeks at 5°C) with subsequent growth under four photoperiods (8, 12, 16 or 20 h). Key results. ‘Intrinsic earliness’ differed by only zero to three nodes for cultivars within species, indicating that maturity type was determined primarily by a cultivar’s responses to vernalisation and photoperiod. An interaction between these responses was observed, with a precipitous decline in the requirement for vernalisation when photoperiods exceeded 12 h. Many cultivars also displayed a persistent component to their vernalisation response, whereby long photoperiods (20 h) did not completely negate the response to vernalisation. Conclusions. Later maturity was associated particularly with need for long exposure to the vernalisation treatment to minimise the duration from sowing to first flower appearance. Stable flowering is more likely when a cultivar has components of its vernalisation requirement that are not satisfied before autumn ends to prevent premature flowering, and a photoperiod response in spring that overrides any unmet vernalisation requirement. Implications. Persistence by serradella cultivars requires selection for suitable responsiveness to vernalisation and photoperiod.
期刊介绍:
Crop and Pasture Science (formerly known as Australian Journal of Agricultural Research) is an international journal publishing outcomes of strategic research in crop and pasture sciences and the sustainability of farming systems. The primary focus is broad-scale cereals, grain legumes, oilseeds and pastures. Articles are encouraged that advance understanding in plant-based agricultural systems through the use of well-defined and original aims designed to test a hypothesis, innovative and rigorous experimental design, and strong interpretation. The journal embraces experimental approaches from molecular level to whole systems, and the research must present novel findings and progress the science of agriculture.
Crop and Pasture Science is read by agricultural scientists and plant biologists, industry, administrators, policy-makers, and others with an interest in the challenges and opportunities facing world agricultural production.
Crop and Pasture Science is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.