Modified Deterministic Approach for Size Invariant Visual Secret Sharing with Improved Quality of Recovered Secret

IF 1.1 Q3 CRIMINOLOGY & PENOLOGY Journal of Applied Security Research Pub Date : 2022-06-02 DOI:10.1080/19361610.2022.2080470
R. Chaturvedi, Sudeep D. Thepade, Swati Ahirrao
{"title":"Modified Deterministic Approach for Size Invariant Visual Secret Sharing with Improved Quality of Recovered Secret","authors":"R. Chaturvedi, Sudeep D. Thepade, Swati Ahirrao","doi":"10.1080/19361610.2022.2080470","DOIUrl":null,"url":null,"abstract":"Abstract In the digital world, securing data is very significant. Digital data can focus either on content secrecy or the quality of recovered secret content. Visual Secret Sharing (VSS) becomes vital when content secrecy is essential over quality. VSS encrypts the secret into “n” share. The individual share cannot reveal any information; the secret gets revealed only when a predefined number of shares come together. Earlier attempted probabilistic and random grid approaches of size invariant VSS compromise in quality of recovered secret. Paper presents a method as a modified deterministic approach for size invariant VSS with improved quality of recovered secret; giving minimum Mean Squared Error (MSE), maximum Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM) close to “1” as compared to other existing methods.","PeriodicalId":44585,"journal":{"name":"Journal of Applied Security Research","volume":"18 1","pages":"700 - 717"},"PeriodicalIF":1.1000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Security Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19361610.2022.2080470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRIMINOLOGY & PENOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In the digital world, securing data is very significant. Digital data can focus either on content secrecy or the quality of recovered secret content. Visual Secret Sharing (VSS) becomes vital when content secrecy is essential over quality. VSS encrypts the secret into “n” share. The individual share cannot reveal any information; the secret gets revealed only when a predefined number of shares come together. Earlier attempted probabilistic and random grid approaches of size invariant VSS compromise in quality of recovered secret. Paper presents a method as a modified deterministic approach for size invariant VSS with improved quality of recovered secret; giving minimum Mean Squared Error (MSE), maximum Peak Signal to Noise Ratio (PSNR), and Structural Similarity Index (SSIM) close to “1” as compared to other existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进的确定性大小不变视觉秘密共享方法,提高了恢复秘密的质量
在数字世界中,保护数据是非常重要的。数字数据既可以关注内容的保密性,也可以关注恢复的秘密内容的质量。当内容保密比质量更重要时,视觉秘密共享(VSS)变得至关重要。VSS将秘密加密为“n”共享。个人共享不能泄露任何信息;只有当预定义数量的股份聚集在一起时,这个秘密才会被披露。先前尝试的大小不变VSS的概率和随机网格方法在恢复秘密的质量上存在缺陷。本文提出了一种改进的确定性大小不变VSS方法,提高了恢复密钥的质量;与其他现有方法相比,给出最小均方误差(MSE)、最大峰值信噪比(PSNR)和接近“1”的结构相似指数(SSIM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Security Research
Journal of Applied Security Research CRIMINOLOGY & PENOLOGY-
CiteScore
2.90
自引率
15.40%
发文量
35
期刊最新文献
Campus Security and Crime Prevention: A View from a Police Chief with a Ph.D. in Criminology Privacy, Data Protection and Cyber Crimes: Mapping Perceptions of Pakistani Users Theoretical and Experimental Framework for Estimating Cyber Victimization Risk in a Hybrid Physical-Virtual World Cybersecurity Risk Management Scenarios for Teaching Information Security Management The Rise of #Cartels: Exploring the Organizational Operations and Messaging of Public Perception on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1