{"title":"NEURAL NETWORKS FOR THE PREDICTION OF FRESH PROPERTIES AND COMPRESSIVE STRENGTH OF FLOWABLE CONCRETE","authors":"R. Jayaseelan, Gajalskshmi Pandulu, G. Ashwini","doi":"10.4090/juee.2019.v13n1.183197","DOIUrl":null,"url":null,"abstract":"This paper presents the prediction of fresh concrete properties and compressive strength of flowable concrete through neural network approach. A comprehensive data set was generated from the experiments performed in the laboratory under standard conditions. The flowable concrete was made with two different types of micro particles and with single nano particles. The input parameter was chosen for the neural network model as cement, fine aggregate, coarse aggregate, superplasticizer, water-cement ratio, micro aluminium oxide particles, micro titanium oxide particles, and nano silica. The output parameter includes the slump Flow, L-Box flow, V Funnel flow and compressive strength of the flowable concrete. To develop a suitable neural network model, several training algorithms were used such as BFGS Quasi- Newton back propagation, Fletcher-Powell conjugate gradient back propagation, Polak - Ribiere conjugate gradient back propagation, Gradient descent with adaptive linear back propagation and Levenberg-Marquardt back propagation. It was found that BFGS Quasi- Newton back propagation and Levenberg-Marquardt back propagation algorithm provides more than 90% on the prediction accuracy. Hence, the model performance was agreeable for prediction purposes for the fresh properties and compressive strength of flowable concrete.","PeriodicalId":17594,"journal":{"name":"Journal of Urban and Environmental Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urban and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4090/juee.2019.v13n1.183197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 8
Abstract
This paper presents the prediction of fresh concrete properties and compressive strength of flowable concrete through neural network approach. A comprehensive data set was generated from the experiments performed in the laboratory under standard conditions. The flowable concrete was made with two different types of micro particles and with single nano particles. The input parameter was chosen for the neural network model as cement, fine aggregate, coarse aggregate, superplasticizer, water-cement ratio, micro aluminium oxide particles, micro titanium oxide particles, and nano silica. The output parameter includes the slump Flow, L-Box flow, V Funnel flow and compressive strength of the flowable concrete. To develop a suitable neural network model, several training algorithms were used such as BFGS Quasi- Newton back propagation, Fletcher-Powell conjugate gradient back propagation, Polak - Ribiere conjugate gradient back propagation, Gradient descent with adaptive linear back propagation and Levenberg-Marquardt back propagation. It was found that BFGS Quasi- Newton back propagation and Levenberg-Marquardt back propagation algorithm provides more than 90% on the prediction accuracy. Hence, the model performance was agreeable for prediction purposes for the fresh properties and compressive strength of flowable concrete.
期刊介绍:
Journal of Urban and Environmental Engineering (JUEE) provides a forum for original papers and for the exchange of information and views on significant developments in urban and environmental engineering worldwide. The scope of the journal includes: (a) Water Resources and Waste Management [...] (b) Constructions and Environment[...] (c) Urban Design[...] (d) Transportation Engineering[...] The Editors welcome original papers, scientific notes and discussions, in English, in those and related topics. All papers submitted to the Journal are peer reviewed by an international panel of Associate Editors and other experts. Authors are encouraged to suggest potential referees with their submission. Authors will have to confirm that the work, or any part of it, has not been published before and is not presently being considered for publication elsewhere.