{"title":"Major opportunities of digital twins for smart buildings: a scientometric and content analysis","authors":"F. A. Ghansah, Weisheng Lu","doi":"10.1108/sasbe-09-2022-0192","DOIUrl":null,"url":null,"abstract":"PurposeDigital twins provide enormous opportunities for smart buildings. However, an up-to-date intellectual landscape to understand and identify the major opportunities of digital twins for smart buildings is still not enough. This study, therefore, performs an up-to-date comprehensive literature review to identify the major opportunities of digital twins for smart buildings.Design/methodology/approachScientometric and content analysis are utilised to comprehensively evaluate the intellectual landscape of the general knowledge of digital twins for smart buildings.FindingsThe study uncovered 24 opportunities that were further categorised into four major opportunities: efficient building performance (smart “building” environment), efficient building process (smart construction site environment), information efficiency and effective user interactions. The study further identified the limitations of the existing studies and made recommendations for future research in the methodology adopted and the research domain. Five research domains were considered for future research, namely “real-time data acquisition, processing and storage”, “security and privacy issues”, “standardised and domain modelling”, “collaboration between the building industry and the digital twin developers” and “skilled workforce to enable a seamless transition from theory to practice”.Practical implicationsAll stakeholders, including practitioners, policymakers and researchers in the field of “architecture, engineering, construction and operations” (AECO), may benefit from the findings of this study by gaining an in-depth understanding of the opportunities of digital twins and their implementation in smart buildings in the AECO industry. The limitations and the possible research directions may serve as guidelines for streamlining the practical adoption and implementation of digital twins for smart buildings.Originality/valueThis study adopted scientometric and content analysis to comprehensively assess the intellectual landscape of relevant literature and identify four major opportunities of digital twins for smart building, to which scholars have given limited attention. Finally, a research direction framework is presented to address the identified limitations of existing studies and help envision the ideal state of digital twins for smart buildings.","PeriodicalId":45779,"journal":{"name":"Smart and Sustainable Built Environment","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart and Sustainable Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/sasbe-09-2022-0192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
PurposeDigital twins provide enormous opportunities for smart buildings. However, an up-to-date intellectual landscape to understand and identify the major opportunities of digital twins for smart buildings is still not enough. This study, therefore, performs an up-to-date comprehensive literature review to identify the major opportunities of digital twins for smart buildings.Design/methodology/approachScientometric and content analysis are utilised to comprehensively evaluate the intellectual landscape of the general knowledge of digital twins for smart buildings.FindingsThe study uncovered 24 opportunities that were further categorised into four major opportunities: efficient building performance (smart “building” environment), efficient building process (smart construction site environment), information efficiency and effective user interactions. The study further identified the limitations of the existing studies and made recommendations for future research in the methodology adopted and the research domain. Five research domains were considered for future research, namely “real-time data acquisition, processing and storage”, “security and privacy issues”, “standardised and domain modelling”, “collaboration between the building industry and the digital twin developers” and “skilled workforce to enable a seamless transition from theory to practice”.Practical implicationsAll stakeholders, including practitioners, policymakers and researchers in the field of “architecture, engineering, construction and operations” (AECO), may benefit from the findings of this study by gaining an in-depth understanding of the opportunities of digital twins and their implementation in smart buildings in the AECO industry. The limitations and the possible research directions may serve as guidelines for streamlining the practical adoption and implementation of digital twins for smart buildings.Originality/valueThis study adopted scientometric and content analysis to comprehensively assess the intellectual landscape of relevant literature and identify four major opportunities of digital twins for smart building, to which scholars have given limited attention. Finally, a research direction framework is presented to address the identified limitations of existing studies and help envision the ideal state of digital twins for smart buildings.