Silv Wang , Kai Fan , Kuan Zhang , Hui Li , Yintang Yang
{"title":"Data complexity-based batch sanitization method against poison in distributed learning","authors":"Silv Wang , Kai Fan , Kuan Zhang , Hui Li , Yintang Yang","doi":"10.1016/j.dcan.2022.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>The security of Federated Learning (FL)/Distributed Machine Learning (DML) is gravely threatened by data poisoning attacks, which destroy the usability of the model by contaminating training samples, so such attacks are called causative availability indiscriminate attacks. Facing the problem that existing data sanitization methods are hard to apply to real-time applications due to their tedious process and heavy computations, we propose a new supervised batch detection method for poison, which can fleetly sanitize the training dataset before the local model training. We design a training dataset generation method that helps to enhance accuracy and uses data complexity features to train a detection model, which will be used in an efficient batch hierarchical detection process. Our model stockpiles knowledge about poison, which can be expanded by retraining to adapt to new attacks. Being neither attack-specific nor scenario-specific, our method is applicable to FL/DML or other online or offline scenarios.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864822002607/pdfft?md5=b0b1a2d02d1b0851d0a0b9f510f11541&pid=1-s2.0-S2352864822002607-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822002607","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The security of Federated Learning (FL)/Distributed Machine Learning (DML) is gravely threatened by data poisoning attacks, which destroy the usability of the model by contaminating training samples, so such attacks are called causative availability indiscriminate attacks. Facing the problem that existing data sanitization methods are hard to apply to real-time applications due to their tedious process and heavy computations, we propose a new supervised batch detection method for poison, which can fleetly sanitize the training dataset before the local model training. We design a training dataset generation method that helps to enhance accuracy and uses data complexity features to train a detection model, which will be used in an efficient batch hierarchical detection process. Our model stockpiles knowledge about poison, which can be expanded by retraining to adapt to new attacks. Being neither attack-specific nor scenario-specific, our method is applicable to FL/DML or other online or offline scenarios.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.