QUEST FOR SUSTAINABLE CURATIVES FOR CHLOROPRENE RUBBER: A COMPREHENSIVE REVIEW

IF 1.2 4区 工程技术 Q4 POLYMER SCIENCE Rubber Chemistry and Technology Pub Date : 2022-11-07 DOI:10.5254/rct.22.77981
M. De Sarkar, N. Fujii, Yasushi Abe, Yasuhiro Kamba, T. Sunada
{"title":"QUEST FOR SUSTAINABLE CURATIVES FOR CHLOROPRENE RUBBER: A COMPREHENSIVE REVIEW","authors":"M. De Sarkar, N. Fujii, Yasushi Abe, Yasuhiro Kamba, T. Sunada","doi":"10.5254/rct.22.77981","DOIUrl":null,"url":null,"abstract":"\n Chloroprene rubber (CR) is one of the most versatile synthetic rubbers suitable for numerous industrial applications. For years, zinc oxide (ZnO) has been satisfactorily used as the vulcanization activator for CR, typically with organic accelerator(s). Ethylene thiourea (ETU) is the most widely used accelerator, offering the best balance between cost and performance in CR vulcanizates. Recently, the ZnO level in rubber compounds has become a pressing issue because of its harmful environmental impacts. ETU is classified as a substance of potentially serious health risks. It is therefore imperative to identify sustainable crosslinking additives for CR from both technical and commercial standpoints. The key purpose of this review is to collate the significant lines of technological advances made to identify proecological curative options for CR and update the information up to the current year. In preparation for this review, pertinent scholarly articles on the curing of CR, published in scientific journals mainly in the past two decades, were assessed. Since the scope of this review is to capture the significant technical efforts available in the public domain, the reference list is therefore not necessarily an exhaustive one. Reports dealing with proprietary chemicals or undisclosed technical strategies are beyond the purview of this review.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rubber Chemistry and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5254/rct.22.77981","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Chloroprene rubber (CR) is one of the most versatile synthetic rubbers suitable for numerous industrial applications. For years, zinc oxide (ZnO) has been satisfactorily used as the vulcanization activator for CR, typically with organic accelerator(s). Ethylene thiourea (ETU) is the most widely used accelerator, offering the best balance between cost and performance in CR vulcanizates. Recently, the ZnO level in rubber compounds has become a pressing issue because of its harmful environmental impacts. ETU is classified as a substance of potentially serious health risks. It is therefore imperative to identify sustainable crosslinking additives for CR from both technical and commercial standpoints. The key purpose of this review is to collate the significant lines of technological advances made to identify proecological curative options for CR and update the information up to the current year. In preparation for this review, pertinent scholarly articles on the curing of CR, published in scientific journals mainly in the past two decades, were assessed. Since the scope of this review is to capture the significant technical efforts available in the public domain, the reference list is therefore not necessarily an exhaustive one. Reports dealing with proprietary chemicals or undisclosed technical strategies are beyond the purview of this review.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寻求氯丁橡胶的可持续治疗方法:全面审查
氯丁橡胶(CR)是最通用的合成橡胶之一,适用于许多工业应用。多年来,氧化锌(ZnO)已被满意地用作CR的硫化活化剂,通常与有机促进剂一起使用。乙烯硫脲(ETU)是应用最广泛的促进剂,在CR硫化胶中提供了最佳的成本和性能平衡。近年来,橡胶化合物中氧化锌的含量因其对环境的影响而成为一个亟待解决的问题。ETU被列为具有潜在严重健康风险的物质。因此,从技术和商业角度确定可持续的CR交联添加剂是势在必行的。本综述的主要目的是整理为确定CR的亲生态治疗方案而取得的重要技术进展,并更新到本年度的信息。为准备本综述,我们对过去二十年来主要在科学期刊上发表的有关CR治疗的相关学术文章进行了评估。由于本次审查的范围是获取公共领域中可用的重要技术成果,因此参考列表不一定是详尽无遗的。涉及专有化学品或未公开技术策略的报告超出了本审查的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rubber Chemistry and Technology
Rubber Chemistry and Technology 工程技术-高分子科学
CiteScore
3.50
自引率
20.00%
发文量
21
审稿时长
3.6 months
期刊介绍: The scope of RC&T covers: -Chemistry and Properties- Mechanics- Materials Science- Nanocomposites- Biotechnology- Rubber Recycling- Green Technology- Characterization and Simulation. Published continuously since 1928, the journal provides the deepest archive of published research in the field. Rubber Chemistry & Technology is read by scientists and engineers in academia, industry and government.
期刊最新文献
EXPANDING HORIZONS: DIVERSE APPLICATIONS OF RUBBERS AND ELASTOMERS IN EMERGING TECHNOLOGIES EFFECT OF DEEP EUTECTIC SOLVENT PRETREATMENT ON DEVULCANIZATION OF WASTE RUBBER POWDER A NOVEL SBS COMPOUND VIA BLENDING WITH PS-B-PMBL DIBLOCK COPOLYMER FOR ENHANCED MECHANICAL PROPERTIES INFLUENCE OF POLAR MODIFIERS ON THE ANIONIC SOLUTION 1,3-BUTADIENE POLYMERIZATIONS INFLUENCE OF THE MIXTURE VISCOSITY ON MECHANICAL ANISOTROPY AND PROCESSABILITY OF AN NBR-BASED RUBBER MIXTURE FOR ADDITIVE MANUFACTURING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1