Qianwen Li , Xiang Wang , Qingqi Pei , Xiaohua Chen , Kwok-Yan Lam
{"title":"Consistency preserving database watermarking algorithm for decision trees","authors":"Qianwen Li , Xiang Wang , Qingqi Pei , Xiaohua Chen , Kwok-Yan Lam","doi":"10.1016/j.dcan.2022.12.015","DOIUrl":null,"url":null,"abstract":"<div><div>Database watermarking technologies provide an effective solution to data security problems by embedding the watermark in the database to prove copyright or trace the source of data leakage. However, when the watermarked database is used for data mining model building, such as decision trees, it may cause a different mining result in comparison with the result from the original database caused by the distortion of watermark embedding. Traditional watermarking algorithms mainly consider the statistical distortion of data, such as the mean square error, but very few consider the effect of the watermark on database mining. Therefore, in this paper, a consistency preserving database watermarking algorithm is proposed for decision trees. First, label classification statistics and label state transfer methods are proposed to adjust the watermarked data so that the model structure of the watermarked decision tree is the same as that of the original decision tree. Then, the splitting values of the decision tree are adjusted according to the defined constraint equations. Finally, the adjusted database can obtain a decision tree consistent with the original decision tree. The experimental results demonstrated that the proposed algorithm does not corrupt the watermarks, and makes the watermarked decision tree consistent with the original decision tree with a small distortion.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1851-1863"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822002838","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Database watermarking technologies provide an effective solution to data security problems by embedding the watermark in the database to prove copyright or trace the source of data leakage. However, when the watermarked database is used for data mining model building, such as decision trees, it may cause a different mining result in comparison with the result from the original database caused by the distortion of watermark embedding. Traditional watermarking algorithms mainly consider the statistical distortion of data, such as the mean square error, but very few consider the effect of the watermark on database mining. Therefore, in this paper, a consistency preserving database watermarking algorithm is proposed for decision trees. First, label classification statistics and label state transfer methods are proposed to adjust the watermarked data so that the model structure of the watermarked decision tree is the same as that of the original decision tree. Then, the splitting values of the decision tree are adjusted according to the defined constraint equations. Finally, the adjusted database can obtain a decision tree consistent with the original decision tree. The experimental results demonstrated that the proposed algorithm does not corrupt the watermarks, and makes the watermarked decision tree consistent with the original decision tree with a small distortion.
期刊介绍:
Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus.
In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field.
In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.