Geochemistry of the Monte Filau orthogneiss (SW Sardinia, Italy): insight into the geodynamic setting of Ordovician felsic magmatism in the N/NE Gondwana margin
G. Cruciani, D. Fancello, M. Franceschelli, G. Musumeci
{"title":"Geochemistry of the Monte Filau orthogneiss (SW Sardinia, Italy): insight into the geodynamic setting of Ordovician felsic magmatism in the N/NE Gondwana margin","authors":"G. Cruciani, D. Fancello, M. Franceschelli, G. Musumeci","doi":"10.3301/IJG.2018.32","DOIUrl":null,"url":null,"abstract":"The Mt. Filau orthogneiss is an Ordovician orthogneiss outcropping in the External zone of SW Sardinia chain. It consists of dark, biotite-rich facies, a leucocratic coarse-grained facies and a leucocratic fine-grained facies with igneous andalusite. Coarse- and fine-grained leucocratic orthogneiss have comparable major elementcontents, being slightly enriched in SiO2 and depleted in Fe2O3, MgO, TiO2 and CaO as compared to the biotite-bearing orthogneiss. Bt-bearing orthogneiss shows higher Sr and Ba concentrations than leucocratic ones, whereas Rb content is higher in leucocratic orthogneiss as compared to the Bt-bearing ones. Zr content shows a progressive decrease from biotite-bearing orthogneiss, coarse-grained leucocratic ones, to fine-grained orthogneiss. In the spider diagram the Mt. Filau orthogneiss shows the typical signature of calc-alkaline rocks, with negative anomalies of Ba, Nb, Sr and Ti, and positive anomalies in U, K. REE patterns of Bt-bearing and coarse-grained leucocratic orthogneisses are characterized by a moderate LREE fractionation, flat HREE and negative Eu anomaly. Fine-grained leucocratic orthogneiss shows flatter patterns, stronger Eu anomalies and slight HREE enrichment. The geochemical features suggest a clear evolution trend, from the less evolved Bt-bearing orthogneiss to the more differentiated fine-grained leucocratic orthogneisses which likely represent aplite bodies deriving from the most acidic residual melt. Selected trace and REE elements of Mt. Filau are compared with other Ordovician orthogneiss outcropping in the Axial zone of Sardinia Variscan belt. Besides, their geochemical features are also compared with metavolcanics of External and Nappe zone. The geochemical affinity of orthogneisses and metavolcanics from Variscan Sardinia, together with the geochronological data, allows to state a clear cogenetic relationship between the bodies belonging to the calc-alkaline Ordovician magmatic cycle. Our results suggest that the early Paleozoic basement of Sardinia might represents the witness of an early Paleozoic subduction-accretionary complex recording convergence along the N/NE Gondwana margin.","PeriodicalId":49317,"journal":{"name":"Italian Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3301/IJG.2018.32","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8
Abstract
The Mt. Filau orthogneiss is an Ordovician orthogneiss outcropping in the External zone of SW Sardinia chain. It consists of dark, biotite-rich facies, a leucocratic coarse-grained facies and a leucocratic fine-grained facies with igneous andalusite. Coarse- and fine-grained leucocratic orthogneiss have comparable major elementcontents, being slightly enriched in SiO2 and depleted in Fe2O3, MgO, TiO2 and CaO as compared to the biotite-bearing orthogneiss. Bt-bearing orthogneiss shows higher Sr and Ba concentrations than leucocratic ones, whereas Rb content is higher in leucocratic orthogneiss as compared to the Bt-bearing ones. Zr content shows a progressive decrease from biotite-bearing orthogneiss, coarse-grained leucocratic ones, to fine-grained orthogneiss. In the spider diagram the Mt. Filau orthogneiss shows the typical signature of calc-alkaline rocks, with negative anomalies of Ba, Nb, Sr and Ti, and positive anomalies in U, K. REE patterns of Bt-bearing and coarse-grained leucocratic orthogneisses are characterized by a moderate LREE fractionation, flat HREE and negative Eu anomaly. Fine-grained leucocratic orthogneiss shows flatter patterns, stronger Eu anomalies and slight HREE enrichment. The geochemical features suggest a clear evolution trend, from the less evolved Bt-bearing orthogneiss to the more differentiated fine-grained leucocratic orthogneisses which likely represent aplite bodies deriving from the most acidic residual melt. Selected trace and REE elements of Mt. Filau are compared with other Ordovician orthogneiss outcropping in the Axial zone of Sardinia Variscan belt. Besides, their geochemical features are also compared with metavolcanics of External and Nappe zone. The geochemical affinity of orthogneisses and metavolcanics from Variscan Sardinia, together with the geochronological data, allows to state a clear cogenetic relationship between the bodies belonging to the calc-alkaline Ordovician magmatic cycle. Our results suggest that the early Paleozoic basement of Sardinia might represents the witness of an early Paleozoic subduction-accretionary complex recording convergence along the N/NE Gondwana margin.
期刊介绍:
The Italian Journal of Geosciences (born from the merging of the Bollettino della Società Geologica Italiana and the Bollettino del Servizio Geologico d''Italia) provides an international outlet for the publication of high-quality original research contributions in the broad field of the geosciences.
It publishes research papers, special short papers, review papers, discussion-and-replies for their rapid distribution to the international geosciences community.
The journal is firstly intended to call attention to the Italian territory and the adjacent areas for the exceptional role they play in the understanding of geological processes, in the development of modern geology and the Earth sciences in general.
The main focus of the journal is on the geology of Italy and the surrounding sedimentary basins and landmasses, and on their relationships with the Mediterranean geology and geodynamics. Nevertheless, manuscripts on process-oriented and regional studies concerning any other area of the World are also considered for publication.
Papers on structural geology, stratigraphy, sedimentology, basin analysis, paleontology, ecosystems, paleoceanography, paleoclimatology, planetary sciences, geomorphology, volcanology, mineralogy, geochemistry, petrology, geophysics, geodynamics, hydrogeology, geohazards, marine and engineering geology, modelling of geological process, history of geology, the conservation of the geological heritage, and all related applied sciences are welcome.