{"title":"Interpretational challenges related to studies of chalk particle surfaces in scanning and transmission electron microscopy","authors":"M. L. Hjuler, V. Hansen, I. Fabricius","doi":"10.37570/bgsd-2018-66-07","DOIUrl":null,"url":null,"abstract":"Scanning and transmission electron microscopy (SEM and TEM) are capable of characterising the morphology and structure of sub-micron size substances attached to chalk particle surfaces. Some characteristics, however, may originate from sample preparation or reflect interaction between sample and the electron beam. Misinterpretation of surface features may lead to wrong conclusions regarding grain surface properties and cementation level and thus to erroneous characterisation of hydrocarbon\nreservoirs with respect to e.g. wettability, mechanical strength and maximum burial depth. In SEM, conductive coatings may mask surface details or generate artificial ornamentations, and carbon adhesive discs may cause the chalk surface to be covered with a thin carbon film. Electron beam acceleration voltage controls the degree of detail revealed by the electron beam, but in SEM a high electron beam acceleration voltage may provoke bending or curling of ultrathin particles. Recent organic filaments\nmay be confused with clay flakes, and authigenic non-carbonate minerals may have formed in the pore fluid and settled during fluid removal. In TEM, the high acceleration voltage may cause beam damage to calcite and transform the outermost atomic layers into Ca oxide. Thin graphite membranes observed by TEM may be contamination from the carbon film supporting the sample, and overlapping chalk particles in samples formed by drying of a suspension may give the impression of being cemented together. In TEM residual adhesive from the ion-milling process can be confused with cementation features.","PeriodicalId":55310,"journal":{"name":"Bulletin of the Geological Society of Denmark","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Geological Society of Denmark","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.37570/bgsd-2018-66-07","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
Scanning and transmission electron microscopy (SEM and TEM) are capable of characterising the morphology and structure of sub-micron size substances attached to chalk particle surfaces. Some characteristics, however, may originate from sample preparation or reflect interaction between sample and the electron beam. Misinterpretation of surface features may lead to wrong conclusions regarding grain surface properties and cementation level and thus to erroneous characterisation of hydrocarbon
reservoirs with respect to e.g. wettability, mechanical strength and maximum burial depth. In SEM, conductive coatings may mask surface details or generate artificial ornamentations, and carbon adhesive discs may cause the chalk surface to be covered with a thin carbon film. Electron beam acceleration voltage controls the degree of detail revealed by the electron beam, but in SEM a high electron beam acceleration voltage may provoke bending or curling of ultrathin particles. Recent organic filaments
may be confused with clay flakes, and authigenic non-carbonate minerals may have formed in the pore fluid and settled during fluid removal. In TEM, the high acceleration voltage may cause beam damage to calcite and transform the outermost atomic layers into Ca oxide. Thin graphite membranes observed by TEM may be contamination from the carbon film supporting the sample, and overlapping chalk particles in samples formed by drying of a suspension may give the impression of being cemented together. In TEM residual adhesive from the ion-milling process can be confused with cementation features.
期刊介绍:
The Bulletin publishes contributions of international interest in all fields of geological sciences on results of new work on material from Denmark, the Faroes and Greenland. Contributions based on other material may also be submitted to the Bulletin if the subject is of relevance for the geology of the area of primary interest.