Approaches for designing extraction methods for randomly occurring pocket formation of Gemstones. A case of Musakashi Emerald area, Solwezi, Zambia.

IF 1.1 Q3 MINING & MINERAL PROCESSING Journal of Mining and Environment Pub Date : 2021-08-17 DOI:10.22044/JME.2021.10661.2024
Joseph Manyepa, Victor Mutambo
{"title":"Approaches for designing extraction methods for randomly occurring pocket formation of Gemstones. A case of Musakashi Emerald area, Solwezi, Zambia.","authors":"Joseph Manyepa, Victor Mutambo","doi":"10.22044/JME.2021.10661.2024","DOIUrl":null,"url":null,"abstract":"Designing suitable extraction methods for mining randomly occurring pocket formation of gemstones has never been easy at the Musakashi emerald mine due to the limited geological information. In order to improve the productivity as well as the recovery, in this work,   we undertake a detailed geological survey (airborne, surface mapping, geochemical sampling, and trenching activities), and review, analyze, and establish the appropriate extraction methods, and conduct the economic viability of the mining emeralds in the Musakashi   area. A total of 51 holes are drilled in order to define the mineralization and estimate the mineral resource for the rubble ore and the in-situ ore zones using the Surpac Geovia software. The diamond drilling unravels the existence of an alteration zone enveloping the shales in an area of 150m by 100m. The emerald   is localized within these reaction zones, and is estimated to extend to a depth of about 20–30m below the surface. The total mineral resource stands at 345, 290 grams for the rubble ore and 123,870 grams for the discordant veins. From the geological information obtained, a trial pit design is established with a target of increasing recovery of emeralds from the current 10 kg to 100 kg per year.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JME.2021.10661.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

Designing suitable extraction methods for mining randomly occurring pocket formation of gemstones has never been easy at the Musakashi emerald mine due to the limited geological information. In order to improve the productivity as well as the recovery, in this work,   we undertake a detailed geological survey (airborne, surface mapping, geochemical sampling, and trenching activities), and review, analyze, and establish the appropriate extraction methods, and conduct the economic viability of the mining emeralds in the Musakashi   area. A total of 51 holes are drilled in order to define the mineralization and estimate the mineral resource for the rubble ore and the in-situ ore zones using the Surpac Geovia software. The diamond drilling unravels the existence of an alteration zone enveloping the shales in an area of 150m by 100m. The emerald   is localized within these reaction zones, and is estimated to extend to a depth of about 20–30m below the surface. The total mineral resource stands at 345, 290 grams for the rubble ore and 123,870 grams for the discordant veins. From the geological information obtained, a trial pit design is established with a target of increasing recovery of emeralds from the current 10 kg to 100 kg per year.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宝石随机形成袋形的提取方法设计方法。赞比亚Solwezi Musakashi Emerald地区一例。
由于地质资料有限,武藏祖母绿矿设计适合的开采方法一直不是一件容易的事。为了提高生产力和采收率,在这项工作中,我们进行了详细的地质调查(航空、地面测绘、地球化学采样和挖沟活动),并审查、分析和建立了适当的提取方法,并进行了在Musakashi地区开采祖母绿的经济可行性。利用Surpac Geovia软件对碎石矿和原地矿带进行矿化定义和矿产资源估算,共钻了51个孔。金刚石钻探揭示了在150米× 100米的范围内包围页岩的蚀变带的存在。祖母绿位于这些反应区内,据估计可延伸至地表以下约20 - 30米的深度。矿石总资源量为碎石矿345290克,不和谐脉123870克。根据获得的地质信息,建立了一个试验坑设计,目标是将祖母绿的回收率从目前的每年10公斤提高到每年100公斤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mining and Environment
Journal of Mining and Environment MINING & MINERAL PROCESSING-
CiteScore
1.90
自引率
25.00%
发文量
0
期刊最新文献
Fe3O4@TiO2@V2O5 as an efficient magnetic nanoparticle for synthesis of di-indolyl oxindole derivatives Propose a viable stabilization method for slope in weak rock mass environment using numerical modelling: A case study from the cut slopes Estimation of optimum geometric configuration of mine dumps in Wardha valley coalfields in India: a case study An investigation on tailing slurry transport in Kooshk lead-zinc mine in Iran based on non-Newtonian fluid rheology: an experimental study Carnallite Flotation of Khur Biabanak Potash Complex using kimiaflot 619 as a New Collector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1