{"title":"Sub-chronic toxicity of broflanilide on the nervous system of zebrafish (Danio rerio)","authors":"Kai Wang, Zhiqiu Qi, Manman Duan, Ru Zhang, Lu He","doi":"10.1080/02757540.2022.2153836","DOIUrl":null,"url":null,"abstract":"ABSTRACT The new insecticide broflanilide, which possesses high insecticidal activity against agricultural pests, acts on the γ-aminobutyric acid receptor in the insect nervous system. At present, few studies assessed its effect on the nervous system of zebrafish, especially its sub-chronic toxicity on the zebrafish brain. In this study, the sub-chronic toxicity of broflanilide on the zebrafish brain was assessed. After 21 days of exposure at 36.3 μg/L, broflanilide caused oxidative damage to the zebrafish brain, increased the levels of reactive oxygen species and malondialdehyde, and inhibited the activities of superoxide dismutase, catalase, and glutathione peroxidase. Overall, these changes result in brain cell apoptosis, and inhibited growth and development. Moreover, broflanilide affects the release of acetylcholinesterase, γ-aminobutyric acid, 5-hydroxy tryptamine, and dopamine as well as the expression of related genes in the brain, leading to abnormal zebrafish behaviour. These results corroborate the sub-chronic toxicity of broflanilide on zebrafish brain, which helps the further understanding of the potential environmental risk of broflanilide.","PeriodicalId":9960,"journal":{"name":"Chemistry and Ecology","volume":"39 1","pages":"137 - 152"},"PeriodicalIF":1.3000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02757540.2022.2153836","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The new insecticide broflanilide, which possesses high insecticidal activity against agricultural pests, acts on the γ-aminobutyric acid receptor in the insect nervous system. At present, few studies assessed its effect on the nervous system of zebrafish, especially its sub-chronic toxicity on the zebrafish brain. In this study, the sub-chronic toxicity of broflanilide on the zebrafish brain was assessed. After 21 days of exposure at 36.3 μg/L, broflanilide caused oxidative damage to the zebrafish brain, increased the levels of reactive oxygen species and malondialdehyde, and inhibited the activities of superoxide dismutase, catalase, and glutathione peroxidase. Overall, these changes result in brain cell apoptosis, and inhibited growth and development. Moreover, broflanilide affects the release of acetylcholinesterase, γ-aminobutyric acid, 5-hydroxy tryptamine, and dopamine as well as the expression of related genes in the brain, leading to abnormal zebrafish behaviour. These results corroborate the sub-chronic toxicity of broflanilide on zebrafish brain, which helps the further understanding of the potential environmental risk of broflanilide.
期刊介绍:
Chemistry and Ecology publishes original articles, short notes and occasional reviews on the relationship between chemistry and ecological processes. This journal reflects how chemical form and state, as well as other basic properties, are critical in their influence on biological systems and that understanding of the routes and dynamics of the transfer of materials through atmospheric, terrestrial and aquatic systems, and the associated effects, calls for an integrated treatment. Chemistry and Ecology will help promote the ecological assessment of a changing chemical environment and in the development of a better understanding of ecological functions.