Nonlinear large deviation bounds with applications to Wigner matrices and sparse Erdős–Rényi graphs

IF 2.1 1区 数学 Q1 STATISTICS & PROBABILITY Annals of Probability Pub Date : 2020-09-01 DOI:10.1214/20-aop1427
F. Augeri
{"title":"Nonlinear large deviation bounds with applications to Wigner matrices and sparse Erdős–Rényi graphs","authors":"F. Augeri","doi":"10.1214/20-aop1427","DOIUrl":null,"url":null,"abstract":"We prove general nonlinear large deviation estimates similar to Chatterjee-Dembo’s original bounds except that we do not require any second order smoothness. Our approach relies on convex analysis arguments and is valid for a broad class of distributions. Our results are then applied in three different setups. Our first application consists in the mean-field approximation of the partition function of the Ising model under an optimal assumption on the spectra of the adjacency matrices of the sequence of graphs. Next, we apply our general large deviation bound to investigate the large deviation of the traces of powers of Wigner matrices with sub-Gaussian entries, and the upper tail of cycles counts in sparse Erdős–Rényi graphs down to the sparsity threshold n−1/2.","PeriodicalId":50763,"journal":{"name":"Annals of Probability","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-aop1427","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 22

Abstract

We prove general nonlinear large deviation estimates similar to Chatterjee-Dembo’s original bounds except that we do not require any second order smoothness. Our approach relies on convex analysis arguments and is valid for a broad class of distributions. Our results are then applied in three different setups. Our first application consists in the mean-field approximation of the partition function of the Ising model under an optimal assumption on the spectra of the adjacency matrices of the sequence of graphs. Next, we apply our general large deviation bound to investigate the large deviation of the traces of powers of Wigner matrices with sub-Gaussian entries, and the upper tail of cycles counts in sparse Erdős–Rényi graphs down to the sparsity threshold n−1/2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性大偏差界在Wigner矩阵和稀疏Erdős-Rényi图中的应用
我们证明了一般的非线性大偏差估计,类似于Chatterjee-Dembo的原始边界,除了我们不需要任何二阶平滑。我们的方法依赖于凸分析参数,对广泛的分布是有效的。然后将我们的结果应用于三种不同的设置。我们的第一个应用包括在图序列邻接矩阵谱的最优假设下的Ising模型配分函数的平均场近似。接下来,我们应用我们的一般大偏差界来研究具有亚高斯条目的Wigner矩阵的幂轨迹的大偏差,以及稀疏Erdős-Rényi图中循环计数的上尾,直到稀疏阈值n−1/2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Probability
Annals of Probability 数学-统计学与概率论
CiteScore
4.60
自引率
8.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Annals of Probability publishes research papers in modern probability theory, its relations to other areas of mathematics, and its applications in the physical and biological sciences. Emphasis is on importance, interest, and originality – formal novelty and correctness are not sufficient for publication. The Annals will also publish authoritative review papers and surveys of areas in vigorous development.
期刊最新文献
Most transient random walks have infinitely many cut times Scaling limit of the heavy tailed ballistic deposition model with p-sticking Decay of convolved densities via Laplace transform On strong solutions of Itô’s equations with Dσ and b in Morrey classes containing Ld Global information from local observations of the noisy voter model on a graph
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1