Convergence problem of Ostrovsky equation with rough data and random data

IF 1.2 2区 数学 Q1 MATHEMATICS Indiana University Mathematics Journal Pub Date : 2020-06-24 DOI:10.1512/iumj.2022.71.9189
Wei Yan, Qiaoqiao Zhang, Jinqiao Duan, Meihua Yang
{"title":"Convergence problem of Ostrovsky equation with rough data and random data","authors":"Wei Yan, Qiaoqiao Zhang, Jinqiao Duan, Meihua Yang","doi":"10.1512/iumj.2022.71.9189","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the pointwise convergence problem of free Ostrovsky equation with rough data and random data. Firstly, we show the almost everywhere pointwise convergence of free Ostrovsky equation in $H^{s}(\\mathbb{R})$ with $s\\geq \\frac{1}{4}$ with rough data. Secondly, we present counterexamples showing that the maximal function estimate related to the free Ostrovsky equation can fail if $s<\\frac{1}{4}$. Finally, for every $x\\in \\mathbb{R}$, we show the almost surely pointwise convergence of free Ostrovsky equation in $L^{2}(\\mathbb{R})$ with random data. The main tools are the density theorem, high-low frequency idea, Wiener decomposition and Lemmas 2.1-2.6 as well as the probabilistic estimates of some random series which are just Lemmas 3.2-3.4 in this paper. The main difficulty is that zero is the singular point of the phase functions of free Ostrovsky equation. We use high-low frequency idea to conquer the difficulties.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2022.71.9189","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we consider the pointwise convergence problem of free Ostrovsky equation with rough data and random data. Firstly, we show the almost everywhere pointwise convergence of free Ostrovsky equation in $H^{s}(\mathbb{R})$ with $s\geq \frac{1}{4}$ with rough data. Secondly, we present counterexamples showing that the maximal function estimate related to the free Ostrovsky equation can fail if $s<\frac{1}{4}$. Finally, for every $x\in \mathbb{R}$, we show the almost surely pointwise convergence of free Ostrovsky equation in $L^{2}(\mathbb{R})$ with random data. The main tools are the density theorem, high-low frequency idea, Wiener decomposition and Lemmas 2.1-2.6 as well as the probabilistic estimates of some random series which are just Lemmas 3.2-3.4 in this paper. The main difficulty is that zero is the singular point of the phase functions of free Ostrovsky equation. We use high-low frequency idea to conquer the difficulties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有粗糙数据和随机数据的Ostrovsky方程的收敛性问题
本文研究了具有粗糙数据和随机数据的自由Ostrovsky方程的点向收敛问题。首先,我们用粗糙数据$s\geq \frac{1}{4}$证明了$H^{s}(\mathbb{R})$中自由Ostrovsky方程的几乎处处点向收敛性。其次,我们给出了反例,表明与自由Ostrovsky方程相关的极大函数估计在$s<\frac{1}{4}$情况下可能失败。最后,对于每一个$x\in \mathbb{R}$,我们用随机数据证明了$L^{2}(\mathbb{R})$中自由Ostrovsky方程几乎肯定是点向收敛的。本文的主要工具是密度定理、高低频思想、维纳分解和引理2.1-2.6,以及一些随机序列的概率估计,这些引理仅为3.2-3.4。主要困难在于零是自由Ostrovsky方程相函数的奇点。我们用高频低频的思想来克服困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
期刊最新文献
The symmetric minimal surface equation A central limit theorem for the degree of a random product of Cremona transformations C^{1,\alpha} Regularity of convex hypersurfaces with prescribed curvature measures Vanishing dissipation of the 2D anisotropic Boussinesq equations in the half plane Unique continuation inequalities for nonlinear Schroedinger equations based on uncertainty principles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1