Interannual global carbon cycle variations linked to atmospheric circulation variability

Na Li, S. Sippel, Alexander J. Winkler, M. Mahecha, M. Reichstein, A. Bastos
{"title":"Interannual global carbon cycle variations linked to atmospheric circulation variability","authors":"Na Li, S. Sippel, Alexander J. Winkler, M. Mahecha, M. Reichstein, A. Bastos","doi":"10.5194/esd-13-1505-2022","DOIUrl":null,"url":null,"abstract":"Abstract. One of the least understood temporal scales of global carbon cycle (C-cycle) dynamics is its interannual variability (IAV). This variability is mainly driven by variations in the local climatic drivers of terrestrial ecosystem activity, which in turn are controlled by large-scale modes of atmospheric variability. Here, we quantify the fraction of global C-cycle IAV that is explained by large-scale atmospheric circulation variability, which is quantified by spatiotemporal sea level pressure (SLP) fields. C-cycle variability is diagnosed from the global detrended atmospheric CO2 growth rate and the land CO2 sink from 16 dynamic global vegetation models and two atmospheric inversions in the Global Carbon Budget 2018. We use a regularized linear regression model, which represents a statistical learning technique apt to deal with the large number of atmospheric circulation predictors (p≥800, each representing one pixel-based time series of SLP anomalies) in a relatively short observed record (n<60 years). We show that boreal winter and spring SLP anomalies allow predicting IAV in the atmospheric CO2 growth rate and the global land sink, with Pearson correlations between reference and predicted values between 0.70 and 0.84 for boreal winter SLP anomalies. This is comparable to or higher than that of a similar model using 15 traditional teleconnection indices as predictors. The spatial patterns of regression coefficients of the model based on SLP fields show a predominant role of the tropical Pacific and over Southeast Asia extending to Australia, corresponding to the regions associated with the El Niño–Southern Oscillation variability. We also identify another important region in the western Pacific, roughly corresponding to the West Pacific pattern. We further evaluate the influence of the time series length on the predictability of IAV and find that reliable estimates of global C-cycle IAV can be obtained from records of 30–54 years. For shorter time series (n<30 years), however, our results show that conclusions about CO2 IAV patterns and drivers need to be evaluated with caution.\nOverall, our study illustrates a new data-driven and flexible approach to model the relationship between large-scale atmospheric circulation variations and C-cycle variability at global and regional scales, complementing the traditional use of teleconnection indices.\n","PeriodicalId":92775,"journal":{"name":"Earth system dynamics : ESD","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth system dynamics : ESD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-13-1505-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. One of the least understood temporal scales of global carbon cycle (C-cycle) dynamics is its interannual variability (IAV). This variability is mainly driven by variations in the local climatic drivers of terrestrial ecosystem activity, which in turn are controlled by large-scale modes of atmospheric variability. Here, we quantify the fraction of global C-cycle IAV that is explained by large-scale atmospheric circulation variability, which is quantified by spatiotemporal sea level pressure (SLP) fields. C-cycle variability is diagnosed from the global detrended atmospheric CO2 growth rate and the land CO2 sink from 16 dynamic global vegetation models and two atmospheric inversions in the Global Carbon Budget 2018. We use a regularized linear regression model, which represents a statistical learning technique apt to deal with the large number of atmospheric circulation predictors (p≥800, each representing one pixel-based time series of SLP anomalies) in a relatively short observed record (n<60 years). We show that boreal winter and spring SLP anomalies allow predicting IAV in the atmospheric CO2 growth rate and the global land sink, with Pearson correlations between reference and predicted values between 0.70 and 0.84 for boreal winter SLP anomalies. This is comparable to or higher than that of a similar model using 15 traditional teleconnection indices as predictors. The spatial patterns of regression coefficients of the model based on SLP fields show a predominant role of the tropical Pacific and over Southeast Asia extending to Australia, corresponding to the regions associated with the El Niño–Southern Oscillation variability. We also identify another important region in the western Pacific, roughly corresponding to the West Pacific pattern. We further evaluate the influence of the time series length on the predictability of IAV and find that reliable estimates of global C-cycle IAV can be obtained from records of 30–54 years. For shorter time series (n<30 years), however, our results show that conclusions about CO2 IAV patterns and drivers need to be evaluated with caution. Overall, our study illustrates a new data-driven and flexible approach to model the relationship between large-scale atmospheric circulation variations and C-cycle variability at global and regional scales, complementing the traditional use of teleconnection indices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与大气环流变化相关的全球碳循环年际变化
摘要全球碳循环(C-cycle)动力学的年际变率(IAV)是人们了解最少的时间尺度之一。这种变率主要是由陆地生态系统活动的局部气候驱动因素的变化驱动的,而这些气候驱动因素又受大尺度大气变率模态的控制。在这里,我们量化了由大尺度大气环流变率解释的全球c -循环IAV的比例,而大尺度大气环流变率是由时空海平面压力场量化的。c -循环变率是根据《2018年全球碳预算》中16个动态全球植被模式和2个大气逆温的全球大气CO2增长率和陆地CO2汇的趋势来诊断的。我们使用正则化线性回归模型,该模型代表了一种统计学习技术,适用于处理相对较短观测记录(n<60年)中的大量大气环流预测因子(p≥800,每个代表一个基于像素的SLP异常时间序列)。我们发现,北方冬季和春季SLP异常可以预测大气CO2增长率和全球陆地汇的IAV,北方冬季SLP异常的参考值和预测值之间的Pearson相关性在0.70和0.84之间。这与使用15个传统遥相关指数作为预测指标的类似模型相当或更高。基于SLP场的模式回归系数的空间格局显示热带太平洋和延伸至澳大利亚的东南亚地区占主导地位,与El Niño-Southern振荡变率相关的区域相对应。我们还确定了西太平洋的另一个重要区域,大致对应于西太平洋格局。我们进一步评估了时间序列长度对IAV可预测性的影响,发现可以从30-54年的记录中获得全球c -周期IAV的可靠估计。然而,对于较短的时间序列(n<30年),我们的研究结果表明,关于CO2 IAV模式和驱动因素的结论需要谨慎评估。总的来说,我们的研究展示了一种新的数据驱动和灵活的方法来模拟全球和区域尺度上大尺度大气环流变化与c -周期变化之间的关系,补充了传统的遥相关指数的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing the estimation of future climate impacts within the United States. Carbon fluxes in spring wheat agroecosystem in India A 20-year satellite-reanalysis-based climatology of extreme precipitation characteristics over the Sinai Peninsula Impacts of anthropogenic water regulation on global riverine dissolved organic carbon transport Working at the limit: a review of thermodynamics and optimality of the Earth system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1