Semi-empirical model of the spatiotemporal surface temperature distribution on the plain part of Ukraine

IF 0.6 Q4 GEOCHEMISTRY & GEOPHYSICS Geofizicheskiy Zhurnal-Geophysical Journal Pub Date : 2023-05-14 DOI:10.24028/gj.v45i2.278328
S. Boychenko, N. Maidanovych
{"title":"Semi-empirical model of the spatiotemporal surface temperature distribution on the plain part of Ukraine","authors":"S. Boychenko, N. Maidanovych","doi":"10.24028/gj.v45i2.278328","DOIUrl":null,"url":null,"abstract":"The spatial variation of temperature is found to depend linearly on climate continentality, morphology of the relief, the position of the site with respect to seas, in addition to the usual elevation, latitude and longitude predictors. There are other factors that can have an additional significant influence: big bodies of water, terrain attributes relief, atmospheric factors (local circulation), configuration and aspect of coasts and vegetation. Therefore, these multifactorial influences form the climatic field of temperature. \nIn this study, the regional semi—empirical model of the spatiotemporal distribution of the average annual and monthly temperature for the plain part of Ukraine on the basis of the methodology for assessing the influence of height above sea level and geographic coordinates is proposed. Based on the method for determining the altitudinal, latitudinal, and longitudinal gradients of meteorological parameters, we calculated these gradients for annual and monthly air surface temperature for the periods 1961—1990 and 1991—2020. \nThus, on the plain part of Ukraine, the annual surface air temperature decreases by an average on 0.60—0.63 °C with a shift of 100 m height above sea level, on 0.51—0.55 °C with a shift of one latitude degree to the north, on 0.067—0.071 °C with a shift of one longitude degree to the east. Also, the variations of these annual mean temperature gradients from year to year over the period 1991—2020 are characteristic. \nThe seasonal variation of gradients has a pronounced non—monotonic character: highest values of altitudinal gradientare typical for July—August (from –0.63 to –0.73 °C per 100 m), and the lowest values — for April—May (from –0.45 to –0.55 °C per 100 m); highest values of latitudinal gradient are typical for August—September (from –0.60 to –0.70 °С per 1 °N), and the lowest values — for April—May (from –0.20 to –0.35 °С per 1° N); the longitudinal gradients have positive values in June—August (0.074—0.128 °C per 1° E), and negative values in November—March (from –0.228 to –0.154 °C per 1° E). \nWe found that the altitudinal and latitudinal gradients of temperature have the most spatiotemporal variability and the longitudinal gradient has the smallest one. Greatest variabilities of temperature gradient values are typical for February—March and July—September, and the least variability — for April—May. \nThe analysis of the dynamics of gradient changes in the period 1991—2020 compared to the period 1961—1991 showed the following: the altitudinal gradientvalues increased by 8—13 %. in January and March—May; the latitudinal gradient values increased by ~30 % in December—February and decreased by ~20 % in May—August. \nThe proposed semi—empirical model contains a coefficient that takes into account influence of additional effects associated with pronounced orographic and other terrain features. This study presents the numerical values of this coefficient for some specific microclimate regions of the plain part of Ukraine. \nThe model estimates of thirty—year monthly mean temperature in Ukraine for the periods 1961—1990 and 1991—2020was calculated. A comparison of the model estimates of of the average annual and monthly temperature for 72 meteostations in Ukraine with their actual values showed a statistically significant correlation (the reliability of the linear approximation is 0.89—0.98). Thus, the presented design of the semi-empirical model makes it possible to quite well restore the annual and monthly temperature on the territory of Ukraine","PeriodicalId":54141,"journal":{"name":"Geofizicheskiy Zhurnal-Geophysical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofizicheskiy Zhurnal-Geophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24028/gj.v45i2.278328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

The spatial variation of temperature is found to depend linearly on climate continentality, morphology of the relief, the position of the site with respect to seas, in addition to the usual elevation, latitude and longitude predictors. There are other factors that can have an additional significant influence: big bodies of water, terrain attributes relief, atmospheric factors (local circulation), configuration and aspect of coasts and vegetation. Therefore, these multifactorial influences form the climatic field of temperature. In this study, the regional semi—empirical model of the spatiotemporal distribution of the average annual and monthly temperature for the plain part of Ukraine on the basis of the methodology for assessing the influence of height above sea level and geographic coordinates is proposed. Based on the method for determining the altitudinal, latitudinal, and longitudinal gradients of meteorological parameters, we calculated these gradients for annual and monthly air surface temperature for the periods 1961—1990 and 1991—2020. Thus, on the plain part of Ukraine, the annual surface air temperature decreases by an average on 0.60—0.63 °C with a shift of 100 m height above sea level, on 0.51—0.55 °C with a shift of one latitude degree to the north, on 0.067—0.071 °C with a shift of one longitude degree to the east. Also, the variations of these annual mean temperature gradients from year to year over the period 1991—2020 are characteristic. The seasonal variation of gradients has a pronounced non—monotonic character: highest values of altitudinal gradientare typical for July—August (from –0.63 to –0.73 °C per 100 m), and the lowest values — for April—May (from –0.45 to –0.55 °C per 100 m); highest values of latitudinal gradient are typical for August—September (from –0.60 to –0.70 °С per 1 °N), and the lowest values — for April—May (from –0.20 to –0.35 °С per 1° N); the longitudinal gradients have positive values in June—August (0.074—0.128 °C per 1° E), and negative values in November—March (from –0.228 to –0.154 °C per 1° E). We found that the altitudinal and latitudinal gradients of temperature have the most spatiotemporal variability and the longitudinal gradient has the smallest one. Greatest variabilities of temperature gradient values are typical for February—March and July—September, and the least variability — for April—May. The analysis of the dynamics of gradient changes in the period 1991—2020 compared to the period 1961—1991 showed the following: the altitudinal gradientvalues increased by 8—13 %. in January and March—May; the latitudinal gradient values increased by ~30 % in December—February and decreased by ~20 % in May—August. The proposed semi—empirical model contains a coefficient that takes into account influence of additional effects associated with pronounced orographic and other terrain features. This study presents the numerical values of this coefficient for some specific microclimate regions of the plain part of Ukraine. The model estimates of thirty—year monthly mean temperature in Ukraine for the periods 1961—1990 and 1991—2020was calculated. A comparison of the model estimates of of the average annual and monthly temperature for 72 meteostations in Ukraine with their actual values showed a statistically significant correlation (the reliability of the linear approximation is 0.89—0.98). Thus, the presented design of the semi-empirical model makes it possible to quite well restore the annual and monthly temperature on the territory of Ukraine
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乌克兰平原地区地表温度时空分布的半经验模型
除了通常的海拔、纬度和经度预测指标外,温度的空间变化还与气候大陆性、地形形态、遗址相对于海洋的位置呈线性关系。还有其他因素可以产生额外的重大影响:大水体、地形属性、地形起伏、大气因素(当地环流)、海岸和植被的形态和面貌。因此,这些多因素的影响形成了温度的气候场。本文在海拔高度和地理坐标影响评价方法的基础上,提出了乌克兰平原地区年平均气温和月平均气温时空分布的区域半经验模型。基于气象参数的垂直、纬度和纵向梯度的确定方法,分别计算了1961—1990年和1991—2020年的年和月地表温度梯度。因此,在乌克兰的平原地区,每年的地表气温平均下降0.60-0.63°C,海拔100米的高度移动,0.51-0.55°C,向北移动一个纬度,0.067-0.071°C,向东移动一个经度。此外,这些年平均温度梯度在1991-2020年期间的年际变化也具有特征。海拔梯度的季节变化具有明显的非单调性特征:7 - 8月海拔梯度最高(- 0.63 ~ - 0.73°C / 100 m), 4 - 5月海拔梯度最低(- 0.45 ~ - 0.55°C / 100 m);8 - 9月纬度梯度最高(每1°N - 0.60°~ - 0.70°С), 4 - 5月最低(每1°N - 0.20°~ - 0.35°С);纵向梯度在6 ~ 8月为正值(0.074 ~ 0.128°C / 1°E),在11 ~ 3月为负值(-0.228 ~ -0.154°C / 1°E)。研究发现,气温的纬向和海拔梯度时空变异性最大,纵向梯度时空变异性最小。2 - 3月和7 - 9月的温度梯度值变化最大,4 - 5月的变化最小。与1961-1991年相比,1991-2020年的梯度变化动态分析表明:海拔梯度值增加了8 - 13%。1月和3月至5月;纬度梯度值在12 ~2月增加~ 30%,在5 ~ 8月减少~ 20%。所提出的半经验模型包含一个系数,该系数考虑了与明显的地形和其他地形特征相关的附加效应的影响。本文给出了乌克兰平原部分特定小气候区该系数的数值。对乌克兰1961-1990年和1991 - 2020年的30年月平均气温进行了模式估计。将乌克兰72个气象站的年和月平均气温的模式估计值与其实际值进行比较,显示出统计上显著的相关性(线性近似的可靠性为0.89-0.98)。因此,所提出的半经验模型设计可以很好地恢复乌克兰领土上的年和月温度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geofizicheskiy Zhurnal-Geophysical Journal
Geofizicheskiy Zhurnal-Geophysical Journal GEOCHEMISTRY & GEOPHYSICS-
自引率
60.00%
发文量
50
期刊最新文献
Electrical conductivity anomalies study New palaeomagnetic data for Palaeoproterozoic AMCG complexes of the Ukrainian Shield Depth structure of the Transcarpathian Depression (Ukrainian part) according to density modeling data Development of the methodology of energy and environmental safety of Ukraine based on own geothermics The effect of the mantle and core matter phase state on the course of geodynamic processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1