Theoretical aspects of holographic dark energy

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Communications in Theoretical Physics Pub Date : 2023-08-22 DOI:10.1088/1572-9494/acf27c
Shuang Wang, Miao Li
{"title":"Theoretical aspects of holographic dark energy","authors":"Shuang Wang, Miao Li","doi":"10.1088/1572-9494/acf27c","DOIUrl":null,"url":null,"abstract":"We review the theoretical aspects of holographic dark energy (HDE) in this paper. Making use of the holographic principle (HP) and the dimensional analysis, we derive the core formula of the original HDE (OHDE) model, in which the future event horizon is chosen as the characteristic length scale. Then, we describe the basic properties and the corresponding theoretical studies of the OHDE model, as well as the effect of adding dark sector interaction in the OHDE model. Moreover, we introduce all four types of HDE models that originate from HP, including (1) HDE models with the other characteristic length scale; (2) HDE models with extended Hubble scale; (3) HDE models with dark sector interaction; (4) HDE models with modified black hole entropy. Finally, we introduce the well-known Hubble tension problem, as well as the attempts to alleviate this problem under the framework of HDE. From the perspective of theory, the core formula of HDE is obtained by combining the HP and the dimensional analysis, instead of adding a DE term into the Lagrangian. Therefore, HDE remarkably differs from any other theory of DE. From the perspective of observation, HDE can fit various astronomical data well and has the potential to alleviate the Hubble tension problem. These features make HDE a very competitive dark energy scenario.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/acf27c","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

We review the theoretical aspects of holographic dark energy (HDE) in this paper. Making use of the holographic principle (HP) and the dimensional analysis, we derive the core formula of the original HDE (OHDE) model, in which the future event horizon is chosen as the characteristic length scale. Then, we describe the basic properties and the corresponding theoretical studies of the OHDE model, as well as the effect of adding dark sector interaction in the OHDE model. Moreover, we introduce all four types of HDE models that originate from HP, including (1) HDE models with the other characteristic length scale; (2) HDE models with extended Hubble scale; (3) HDE models with dark sector interaction; (4) HDE models with modified black hole entropy. Finally, we introduce the well-known Hubble tension problem, as well as the attempts to alleviate this problem under the framework of HDE. From the perspective of theory, the core formula of HDE is obtained by combining the HP and the dimensional analysis, instead of adding a DE term into the Lagrangian. Therefore, HDE remarkably differs from any other theory of DE. From the perspective of observation, HDE can fit various astronomical data well and has the potential to alleviate the Hubble tension problem. These features make HDE a very competitive dark energy scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全息暗能量的理论方面
本文综述了全息暗能量(HDE)的理论研究进展。利用全息原理和量纲分析,导出了以未来视界为特征长度尺度的原HDE模型的核心公式。然后,我们描述了OHDE模型的基本性质和相应的理论研究,以及在OHDE模型中加入暗扇区相互作用的效果。此外,我们还介绍了源自HP的四种HDE模型,包括:(1)具有其他特征长度尺度的HDE模型;(2)扩展哈勃尺度的HDE模型;(3)具有暗扇区相互作用的HDE模型;(4)修正黑洞熵的HDE模型。最后,我们介绍了著名的哈勃张力问题,以及在HDE框架下缓解这一问题的尝试。从理论的角度来看,HDE的核心公式是将HP与量纲分析相结合,而不是在拉格朗日量中加入DE项。因此,HDE与其他任何一种DE理论都有明显的不同。从观测的角度来看,HDE可以很好地拟合各种天文数据,有可能缓解哈勃张力问题。这些特点使HDE成为一个非常有竞争力的暗能量方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications in Theoretical Physics
Communications in Theoretical Physics 物理-物理:综合
CiteScore
5.20
自引率
3.20%
发文量
6110
审稿时长
4.2 months
期刊介绍: Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of: mathematical physics quantum physics and quantum information particle physics and quantum field theory nuclear physics gravitation theory, astrophysics and cosmology atomic, molecular, optics (AMO) and plasma physics, chemical physics statistical physics, soft matter and biophysics condensed matter theory others Certain new interdisciplinary subjects are also incorporated.
期刊最新文献
Riemann–Hilbert approach and soliton solutions for the Lakshmanan–Porsezian–Daniel equation with nonzero boundary conditions Towards an efficient variational quantum algorithm for solving linear equations Path integral formalism of open quantum systems with non-diagonal system-bath coupling N = 2 a = 1 supersymmetric KdV equation and its Darboux–Bäcklund transformations Simulation study of multi-layer titanium nitride nanodisk broadband solar absorber and thermal emitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1